Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Genov, D.A.; Zhang, S.; Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 2009, 5, 687–692. [Google Scholar] [CrossRef]
- Borgarello, E.; Kiwi, J.; Graetzel, M.; Pelizzetti, E.; Visca, M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc. 1982, 104, 2996–3002. [Google Scholar] [CrossRef]
- Wu, T.H.; Teslaa, T.; Teitell, M.A.; Chiou, P.Y. Photothermal nanoblade for patterned cell membrane cutting. Opt. Express. 2010, 18, 23153. [Google Scholar] [CrossRef] [PubMed]
- Link, S.; El-asyed, M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. [Google Scholar] [CrossRef]
- Sanchot, A.; Baffou, G.; Marty, R.A.; Arbouet, R.; Quidant, C.; Girard, E. Dujardin, Plasmonic nanoparticle networks for light and heat concentration. ACS Nano. 2012, 6, 3434–3440. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Au nanoparticles target cancer. Nano Today 2007, 2, 18–29. [Google Scholar] [CrossRef]
- Zhao, W.; Karp, J.M. Nanoantennas heat up. Nat. Mater. 2009, 8, 453–454. [Google Scholar] [CrossRef]
- Son, J.H.; Cho, B.; Hong, S.; Lee, S.H.; Hoxha, O.; Haack, A.J.; Lee, L.P. Ultrafast photonic PCR. Light Sci. Appl. 2015, 4, e280. [Google Scholar] [CrossRef] [Green Version]
- Roche, P.J.R.; Najih, M.; Lee, S.S.; Beitel, L.K.; Carnevale, M.L.; Paliouras, M.; Kirk, A.G.; Trifiro, M.A. Real time plasmonic qPCR: How fast is ultra-fast? 30 cycles in 54 seconds. Analyst 2017, 142, 1746–1755. [Google Scholar] [CrossRef]
- Lee, J.; Cheglakov, Z.; Yi, J.; Cronin, T.M.; Gibson, K.J.; Tian, B.; Weizmann, Y. Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 2017, 139, 8054–8057. [Google Scholar] [CrossRef]
- El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Koynov, S.; Brandt, M.S.; Stutzmann, M. Black nonreflecting silicon surfaces for solar cells. Appl. Phys. Lett. 2006, 88, 203107. [Google Scholar] [CrossRef]
- Lin, C.T.; Chang, M.N.; Huang, H.J.; Chen, C.H.; Sun, R.J.; Liao, B.H.; Chou, Y.F.; Chaue, C.N.; Hsiaoa, M.H.; Tseng, F.G.; et al. Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation. Electrochimica Acta. 2016, 192, 15–21. [Google Scholar] [CrossRef]
- Lin, C.T.; Shiao, M.H.; Chang, M.N.; Chu, N.; Chen, Y.W.; Peng, Y.H.; Liao, B.H.; Huang, H.J.; Hsiao, C.N.; Tseng, F.G.; et al. A facile approach to prepare silicon-based Pt-Ag tubular dendritic nano-forests (tDNFs) for solar-light-enhanced methanol oxidation reaction. Nanoscale Res. Lett. 2015, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shiao, M.H.; Lin, C.T.; Huang, H.J.; Chen, P.H.; Liao, B.H.; Tseng, F.G.; Lin, Y.S. Novel gold dendritic nanoflowers deposited on titanium nitride for photoelectrochemical cells. J. Solid State Electrochem. 2018, 22, 3077–3084. [Google Scholar] [CrossRef]
- Shiao, M.H.; Lin, C.T.; Zeng, J.J.; Lin, Y.S. Novel gold dendritic nanoforests combined with titanium nitride for visible-light-enhanced chemical degradation. Nanomaterials 2018, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Smith, D.A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C. 2013, 117, 27073–27080. [Google Scholar] [CrossRef]
- Mullis, K.B.; Erlich, H.A.; Arnheim, N.; Horn, G.T.; Saiki, R.K.; Scharf, S.J. Process for Amplifying, Detecting, And/or-cloning Nucleic Acid Sequences. U.S. Patent 4,683,195, 1987. [Google Scholar]
- Saiki, R.; Scharf, S.; Faloona, F.; Mullis, K.; Horn, G.; Erlich, H.; Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef]
- Saiki, R.; Gelfand, D.; Stoffel, S.; Scharf, S.; Higuchi, R.; Horn, G.; Mullis, K.; Erlich, H. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.R. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future. Anal. Chim. Acta. 2016, 914, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Cavanaugh, S.E.; Bathrick, A.S. Direct PCR amplification of forensic touch and other challenging DNA samples: A review. Forensic Sci. Int. Genet. 2018, 32, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Q.; Huang, H.J.; Chin, L.K.; Yu, Y.F.; Li, X.C. Label-free detection with micro optical fluidic systems (MOFS): A review. Anal. Bioanal. Chem. 2008, 391, 2443–2452. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Hashsham, S.A. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: A review. Anal. Chim. Acta. 2012, 733, 1–15. [Google Scholar] [CrossRef]
- Park, S.; Zhang, Y.; Lin, S.; Wang, T.H.; Yang, S. Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol. Adv. 2011, 29, 830–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquardini, L.; Potrich, C.; Quaglio, M.; Lamberti, A.; Guastella, S.; Lunelli, L.; Cocuzza, M.; Vanzetti, L.; Pirri, C.F.; Pederzolli, C.; et al. Solid phase DNA extraction on PDMS and direct amplification. Lab Chip. 2011, 11, 4029. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Hsieh, I.H. Using an IR lamp to perform DNA amplifications on an oscillatory thermocycler, Appl. Therm. Eng. 2016, 106, 1–12. [Google Scholar] [CrossRef]
- Xu, J.; Lv, X.; Wei, Y.; Zhang, L.; Li, R.; Deng, Y.; Xu, X. Air bubble resistant and disposable microPCR chip with a portable and programmable device for forensic test. Sens. Actuators. 2015, 212, 472–480. [Google Scholar] [CrossRef]
- Jeong, S.; Lim, J.; Kim, M.Y.; Yeom, J.H.; Cho, H.; Lee, H.; Shin, Y.B.; Lee, J.H. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip. Biomed. Microdevices. 2018, 20, 14. [Google Scholar] [CrossRef]
- Chen, J.J.; Liao, M.H.; Li, K.T.; Shen, C.M. One-heater flow-through polymerase chain reaction device by heat pipes cooling. Biomicrofluidics 2015, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, H.; Saito, M.; Shibuya, S.; Tsuji, K.; Miyagawa, N.; Yamanaka, K.; Tamiya, E. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosens. Bioelectron. 2015, 74, 725–730. [Google Scholar] [CrossRef]
- Jiang, X.; Shao, N.; Jing, W.; Tao, S.; Liu, S.; Sui, G. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta 2014, 122, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Li, T.J.; Chang, C.M.; Chang, P.Y.; Chang, Y.C.; Chuang, C.C.; Huang, W.C.; Su, D.B. Handheld energy-efficient magneto-optical real-time quantitative PCR device for target DNA enrichment and quantification. NPG Asia Mater. 2016, 8, e277. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Park, J.H.; Jon, S. Gold nanorod-based photo-PCR system for one-step, rapid detection of bacteria. Nanotheranostics 2017, 1, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiao, M.H.; Zeng, J.J.; Huang, H.J.; Liao, B.H.; Tang, Y.H.; Lin, Y.S. Growth of gold dendritic nanoforests on titanium nitride-coated silicon substrates. J. Visualized Exp. 2019, 148, e59603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Balieu, R.; Lu, X.; Kringos, N. Microstructure evaluation of polymer-modified bitumen by image analysis using two-dimensional fast Fourier transform. Mater. Des. 2018, 137, 164–175. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.J.; Chiang, Y.-C.; Hsu, C.-H.; Chen, J.-J.; Shiao, M.-H.; Yeh, C.-C.; Huang, S.-L.; Lin, Y.-S. Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction. Sensors 2020, 20, 1293. https://doi.org/10.3390/s20051293
Huang HJ, Chiang Y-C, Hsu C-H, Chen J-J, Shiao M-H, Yeh C-C, Huang S-L, Lin Y-S. Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction. Sensors. 2020; 20(5):1293. https://doi.org/10.3390/s20051293
Chicago/Turabian StyleHuang, Hung Ji, Yu-Cheng Chiang, Chia-Hsien Hsu, Jyh-Jian Chen, Ming-Hua Shiao, Chih-Chieh Yeh, Shu-Ling Huang, and Yung-Sheng Lin. 2020. "Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction" Sensors 20, no. 5: 1293. https://doi.org/10.3390/s20051293
APA StyleHuang, H. J., Chiang, Y. -C., Hsu, C. -H., Chen, J. -J., Shiao, M. -H., Yeh, C. -C., Huang, S. -L., & Lin, Y. -S. (2020). Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction. Sensors, 20(5), 1293. https://doi.org/10.3390/s20051293