Detection of Escherichia coli O157:H7 Using Automated Immunomagnetic Separation and Enzyme-Based Colorimetric Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacteria Enrichment Culture and Immunomagnetic Bead Reaction
2.3. Immunomagnetic Separation and Concentrationof E. coli O157:H7 in Milk Samples
2.4. Enzyme-Based Colorimetric Detection of E. coli O157:H7
3. Results and Discussion
3.1. Optimization of Enzyme-Based Colorimetric Assay Conditions
3.2. Colorimetric Detection of E. coli O157:H7 in Milk Using the Automated IMS System
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gansheroff, L.J.; O’Brien, A.D. Escherichia coli O157: H7 in beef cattle presented for slaughter in the US: Higher prevalence rates than previously estimated. Proc. Natl. Acad. Sci. USA 2000, 97, 2959–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsvik, Ø.; Wasteson, Y.; Lund, A.; Hornes, E. Pathogenic Escherichia coli found in food. Int. J. Food Microbiol. 1991, 12, 103–113. [Google Scholar] [CrossRef]
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jett, B.D.; Hatter, K.L.; Huycke, M.M.; Gilmore, M.S. Simplified agar plate method for quantifying viable bacteria. BioTechniques 1997, 23, 648–650. [Google Scholar] [CrossRef]
- Doyle, M.P.; Schoeni, J.L. Isolation of Escherichia coli O157: H7 from retail fresh meats and poultry. Appl. Environ. Microbiol. 1987, 53, 2394–2396. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Kwon, K.Y.; Oh, S.K.; Chang, H.-J.; Chun, H.S.; Choi, S.-W. A multiplex PCR assay for simultaneous detection of Escherichia coli O157: H7, bacillus cereus, vibrio parahaemolyticus, salmonella spp., listeria monocytogenes, and staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog. Dis. 2014, 11, 574–580. [Google Scholar] [CrossRef]
- Oliveira, S.; Santos, L.; Schuch, D.; Silva, A.; Salle, C.; Canal, C. Detection and identification of Salmonellas from poultry-related samples by PCR. Vet. Microbiol. 2002, 87, 25–35. [Google Scholar] [CrossRef]
- Chen, J.; Tang, J.; Liu, J.; Cai, Z.; Bai, X. Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens. J. Appl. Microbiol. 2012, 112, 823–830. [Google Scholar] [CrossRef]
- Joung, C.-K.; Kim, H.-N.; Lim, M.-C.; Jeon, T.-J.; Kim, H.-Y.; Kim, Y.-R. A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens. Bioelectron. 2013, 44, 210–215. [Google Scholar] [CrossRef]
- Dhull, N.; Kaur, G.; Jain, P.; Mishra, P.; Singh, D.; Ganju, L.; Gupta, V.; Tomar, M. Label-free amperometric biosensor for Escherichia coli O157: H7 detection. Appl. Surf. Sci. 2019, 495, 143548. [Google Scholar] [CrossRef]
- Lim, M.-C.; Park, J.Y.; Park, K.; Ok, G.; Jang, H.-J.; Choi, S.-W. An automated system for separation and concentration of food-borne pathogens using immunomagnetic separation. Food Control 2017, 73, 1541–1547. [Google Scholar] [CrossRef]
- Skjerve, E.; Olsvik, Ø. Immunomagnetic separation of Salmonella from foods. Int. J. Food Microbiol. 1991, 14, 11–17. [Google Scholar] [CrossRef]
- Lund, A.; Hellemann, A.; Vartdal, F. Rapid isolation of K88+ Escherichia coli by using immunomagnetic particles. J. Clin. Microbiol. 1988, 26, 2572–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, P.; Wright, D.; Siddons, C. A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli O157 from bovine feces. J. Med. Microbiol. 1994, 40, 424–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, M.-C.; Lee, G.-H.; Huynh, D.T.N.; Letona, C.A.M.; Seo, D.-H.; Park, C.-S.; Kim, Y.-R. Amylosucrase-mediated synthesis and self-assembly of amylose magnetic microparticles. RSC Adv. 2015, 5, 36088–36091. [Google Scholar] [CrossRef]
- Lim, M.-C.; Lee, G.-H.; Huynh, D.T.N.; Hong, C.-E.; Park, S.-Y.; Jung, J.-Y.; Park, C.-S.; Ko, S.; Kim, Y.-R. Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk. Colloids Surf. B Biointerfaces 2016, 145, 854–861. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tian, J.; Xu, J.; Wang, K.; Li, J.; Gee, S.J.; Hammock, B.D.; Li, Q.X.; Xu, T. Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A. Anal. Bioanal. Chem. 2018, 410, 6633–6642. [Google Scholar] [CrossRef]
- Vinayaka, A.C.; Ngo, T.A.; Kant, K.; Engelsmann, P.; Dave, V.P.; Shahbazi, M.-A.; Wolff, A.; Bang, D.D. Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR. Biosens. Bioelectron. 2019, 129, 224–230. [Google Scholar] [CrossRef]
- Bennett, A.; MacPhee, S.; Betts, R. The isolation and detection of Escherichia coli O157 by use of immunomagnetic separation and immunoassay procedures. Lett. Appl. Microbiol. 1996, 22, 237–243. [Google Scholar] [CrossRef]
- Ondera, T.J.; Hamme, A.T., II. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens. Analyst 2015, 140, 7902–7911. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Qu, L.; Wimbrow, A.N.; Jiang, X.; Sun, Y. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 2007, 118, 132–138. [Google Scholar] [CrossRef]
- Fu, Z.; Rogelj, S.; Kieft, T.L. Rapid detection of Escherichia coli O157: H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 2005, 99, 47–57. [Google Scholar] [CrossRef]
- Fedio, W.M.; Jinneman, K.C.; Yoshitomi, K.J.; Zapata, R.; Wendakoon, C.N.; Browning, P.; Weagant, S.D. Detection of E. coli O157: H7 in raw ground beef by Pathatrix™ immunomagnetic-separation, real-time PCR and cultural methods. Int. J. Food Microbiol. 2011, 148, 87–92. [Google Scholar] [CrossRef]
- Mullane, N.; Murray, J.; Drudy, D.; Prentice, N.; Whyte, P.; Wall, P.; Parton, A.; Fanning, S. Detection of Enterobacter sakazakii in dried infant milk formula by cationic-magnetic-bead capture. Appl. Environ. Microbiol. 2006, 72, 6325–6330. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Shi, X.; Gehring, A.G.; Paoli, G.C. Automated immunomagnetic separation for the detection of Escherichia coli O157: H7 from spinach. Int. J. Food Microbiol. 2014, 179, 33–37. [Google Scholar] [CrossRef]
- Lau, H.K.; Clotilde, L.M.; Lin, A.P.; Hartman, G.L.; Lauzon, C.R. Comparison of IMS platforms for detecting and recovering Escherichia coli O157 and Shigella flexneri in foods. J. Lab. Autom. 2013, 18, 178–183. [Google Scholar] [CrossRef]
- Bramburger, A.J.; Brown, R.S.; Haley, J.; Ridal, J.J. A new, automated rapid fluorometric method for the detection of Escherichia coli in recreational waters. J. Great Lakes Res. 2015, 41, 298–302. [Google Scholar] [CrossRef]
- Chen, J.; Alcaine, S.D.; Jiang, Z.; Rotello, V.M.; Nugen, S.R. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe. Anal. Chem. 2015, 87, 8977–8984. [Google Scholar] [CrossRef]
- Miranda, O.R.; Li, X.; Garcia-Gonzalez, L.; Zhu, Z.-J.; Yan, B.; Bunz, U.H.; Rotello, V.M. Colorimetric bacteria sensing using a supramolecular enzyme–nanoparticle biosensor. J. Am. Chem. Soc. 2011, 133, 9650–9653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunda, N.S.K.; Chavali, R.; Mitra, S.K. A hydrogel based rapid test method for detection of Escherichia coli (E. coli) in contaminated water samples. Analyst 2016, 141, 2920–2929. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.-C.; Shin, Y.-J.; Jeon, T.-J.; Kim, H.-Y.; Kim, Y.-R. Microbead-assisted PDA sensor for the detection of genetically modified organisms. Anal. Bioanal. Chem. 2011, 400, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, Z.; Mohammadnejad, J.; Hosseini, M. A new colorimetric assay for amylase based on starch-supported Cu/Au nanocluster peroxidase-like activity. Anal. Bioanal. Chem. 2019, 411, 3621–3629. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, S.; Shao, X.; Feng, Y.; Xie, P.; Luo, Y.; Huang, K.; Xu, W. Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Microchim. Acta 2019, 186, 111. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strains | Colorimetric Change | Absorbance Change | Final Reaction Solution Color |
---|---|---|---|
E. coli O157:H7 | Yes | Yes | |
S. enterica | No | No | |
S. aureus | No | No | |
E. coli O157:H7 + S. enterica | Yes | Yes | |
E. coli O157:H7 + S. aureus | Yes | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.Y.; Park, K.; Ok, G.; Chang, H.-J.; Park, T.J.; Choi, S.-W.; Lim, M.-C. Detection of Escherichia coli O157:H7 Using Automated Immunomagnetic Separation and Enzyme-Based Colorimetric Assay. Sensors 2020, 20, 1395. https://doi.org/10.3390/s20051395
Park JY, Park K, Ok G, Chang H-J, Park TJ, Choi S-W, Lim M-C. Detection of Escherichia coli O157:H7 Using Automated Immunomagnetic Separation and Enzyme-Based Colorimetric Assay. Sensors. 2020; 20(5):1395. https://doi.org/10.3390/s20051395
Chicago/Turabian StylePark, Ji Young, Kisang Park, Gyeongsik Ok, Hyun-Joo Chang, Tae Jung Park, Sung-Wook Choi, and Min-Cheol Lim. 2020. "Detection of Escherichia coli O157:H7 Using Automated Immunomagnetic Separation and Enzyme-Based Colorimetric Assay" Sensors 20, no. 5: 1395. https://doi.org/10.3390/s20051395
APA StylePark, J. Y., Park, K., Ok, G., Chang, H. -J., Park, T. J., Choi, S. -W., & Lim, M. -C. (2020). Detection of Escherichia coli O157:H7 Using Automated Immunomagnetic Separation and Enzyme-Based Colorimetric Assay. Sensors, 20(5), 1395. https://doi.org/10.3390/s20051395