Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Approach
- Predicted Mean Vote (PMV).
- PMVMetBMR, the Predicted Mean Vote (PMV) adjusted considering the Basal Metabolic Rate (BMR) of each participants.
- dTNZ, the distance to ThermoNeutral Zone (dTNZ) [40] defined in a Cartesian orthogonal reference system with ambient temperature in X-axis and skin temperature (Tskin) in the Y-axis, as the distance from the band defined as the “range of ambient temperature at which thermal regulation is achieved only by control of sensible (dry) heat loss” [15].
2.2. Test Cell, Monitoring System, and Participants
- a smartphone, only in R scenario to record the users’ feedback;
- the monitoring system;
- a VR headset, only in the VR scenario;
- an RGB strip LED installed on the rear of the monitor and in the upper edge of the desktop, as defined by a preliminary study with Radiance;
- an Arduino board connected to a TSOP31238 IR receiver (Vishay, Selb, Germany) and an LED IR-type (8 in Figure 3). This system records, through the reverse engineering process, the codes that the remote control sends to the 150 SMD5050 RGB (Tomshine, Guangzhou, China) strip LED [44]. An IR LED emitter manages the lighting (6 in Figure 3).
2.3. Experimental Design
2.4. Dataset Attributes
3. Results
3.1. Dataset Preliminary Analysis
- for some users, there are no “cleaned” data;
- in case of zero variance of PTCP, no correlations could be defined (division by zero).
3.2. Machine Learning Techniques Application and Final Results
- Precision defined as a measure of a classifier’s exactness;
- Recall considered as the completeness of the classifier;
- F1-score, a weighted average of precision and recall;
- Support, the number of occurrences of each label in y are true.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethic Committee Approval
Nomenclature
AT | Air temperature, (°C) |
AV | Air Velocity, (m/s) |
BMR | Basal Metabolic Rate, (ml/kg min) |
BMR* | Basal Metabolic Rate, (Kcal/day) |
CART | Classification and the Regression Trees |
CFD | Computational Fluid Dynamics |
dTNZ | Distance to ThermoNeutral Zone |
EDA | Electrodermal Activity |
ETC | Extra Tree Classifier |
HR | Heart Rate |
Iclo | Thermal Insulation of Clothing, (m2K/W) |
IEQ | Indoor Environmental Quality |
IoT | Internet of Things |
LDA | Linear Discriminant Analysis |
LR | Logistic Regression |
LSVC | Linear Support Vector Classifier |
MetBMR | Metabolic rate defined as a function of BMR (met) |
Metst | Standard tabular value of Metabolic rate (met) |
ML | Machine Learning |
PMV | Predicted Mean Vote |
PMVMetBMR | PMV defined considering specific Met values |
PPD | Predicted Percentage of Dissatisfied, (%) |
PPG | Photoplethysmography |
PTCP | Personal Thermal Comfort Perception |
R | Real scenario |
RFC | Random Forecast Classifier |
RFE | Recursive Feature Elimination |
RH | Relative Humidity, (%) |
RT | Mean radiant temperature, (°C) |
TC | Thermal Comfort |
TCM | Thermal Comfort Model |
TNZ | ThermoNeutral Zone |
Tskin | Skin Temperature, (°C) |
VR | Virtual Reality |
References
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef] [Green Version]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Šujanová, P.; Rychtáriková, M.; Mayor, T.S.; Hyder, A. A healthy, energy-efficient and comfortable indoor environment, a review. Energies 2019, 12, 1414. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Ji, W.; Wang, Z.; Lin, B.; Zhu, Y. A review of operating performance in green buildings: Energy use, indoor environmental quality and occupant satisfaction. Energy Build. 2019, 183, 500–514. [Google Scholar] [CrossRef]
- DIRECTIVE (EU) 2018/844 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 May 2018 amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency (Text. with EEA relevance); European Union: Bruxelles, Belgium, 2018.
- Van Hoof, J.; Mazej, M.; Hensen, J.L.M. Thermal comfort: Research and Practice. Front. Biosci. 2010, 15, 765–788. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, K. A Brief History of Thermal Comfort: From Effective Temperature to Adaptive Thermal Comfort. In Indoor Thermal Comfort Perception; Springer: Cham, Germany, 2015; pp. 7–23. [Google Scholar]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G.; Toftum, J. Fifty years of Fanger’s equation: Is there anything to discover yet? Int. J. Ind. Ergon. 2018, 66, 157–160. [Google Scholar] [CrossRef]
- IEA EBC-Annex 79-Occupant Behaviour-Centric Building Design and Operation. Available online: http://annex79.iea-ebc.org/ (accessed on 10 September 2019).
- Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research—A data-driven literature review. Renew. Sustain. Energy Rev. 2018, 82, 2664–2679. [Google Scholar] [CrossRef]
- Mehmood, M.U.; Chun, D.; Zeeshan, Z.; Han, H.; Jeon, G.; Chen, K. A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019, 202, 109383. [Google Scholar] [CrossRef]
- Kim, J.; Schiavon, S.; Brager, G. Personal comfort models—A new paradigm in thermal comfort for occupant-centric environmental control. Build. Environ. 2018, 132, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Hu, W.; Wen, Y. Thermal Comfort Modeling for Smart Buildings: A Fine-Grained Deep Learning Approach. IEEE Internet Things J. 2019, 6, 2540–2549. [Google Scholar] [CrossRef]
- Kim, J.; Zhou, Y.; Schiavon, S.; Raftery, P.; Brager, G. Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning. Build. Environ. 2018, 129, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Menassa, C.C.; Kamat, V.R. Personalized human comfort in indoor building environments under diverse conditioning modes. Build. Environ. 2017, 126, 304–317. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Currò, C.; Danza, L.; Ghellere, M.; Guazzi, G.; Lenzi, B.; Megale, V.; Meroni, I. Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users’ Feedback, IoT and Machine Learning: A Case Study. Sensors 2018, 18, 1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamone, F.; Belussi, L.; Currò, C.; Danza, L.; Ghellere, M.; Guazzi, G.; Lenzi, B.; Megale, V.; Meroni, I. Application of IoT and Machine Learning techniques for the assessment of thermal comfort perception. Energy Procedia 2018, 148, 798–805. [Google Scholar] [CrossRef]
- Wu, Z.; Li, N.; Peng, J.; Cui, H.; Liu, P.; Li, H.; Li, X. Using an ensemble machine learning methodology-Bagging to predict occupants’ thermal comfort in buildings. Energy Build. 2018, 173, 117–127. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, R. Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm. Build. Environ. 2016, 99, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Hsieh, S.-J. Data-Driven Thermal Comfort Prediction With Support Vector Machine. In Proceedings of the Volume 3: Manufacturing Equipment and Systems, Los Angeles, CA, USA, 4–8 June 2017. [Google Scholar]
- Dai, C.; Zhang, H.; Arens, E.; Lian, Z. Machine learning approaches to predict thermal demands using skin temperatures: Steady-state conditions. Build. Environ. 2017, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.; Youssef Ali Amer, A.; Caballero, N.; Aerts, J.-M. Towards Online Personalized-Monitoring of Human Thermal Sensation Using Machine Learning Approach. Appl. Sci. 2019, 9, 3303. [Google Scholar] [CrossRef] [Green Version]
- Häfner, P.; Seeßle, J.; Dücker, J.; Zienthek, M.; Szeliga, F. Interactive Visualization of Energy Efficiency Concepts Using Virtual Reality. In Proceedings of the EuroVR 2014, Bremen, Germany, 8–10 December 2014; pp. 101–106. [Google Scholar]
- Wang, Z.; He, R.; Chen, K. Thermal comfort and virtual reality headsets. Appl. Ergon. 2020, 85, 103066. [Google Scholar] [CrossRef]
- Kuliga, S.F.; Thrash, T.; Dalton, R.C.; Hölscher, C. Virtual reality as an empirical research tool—Exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban. Syst. 2015, 54, 363–375. [Google Scholar] [CrossRef]
- Yeom, D.; Choi, J.-H.; Kang, S.-H. Investigation of the physiological differences in the immersive virtual reality environment and real indoor environment: Focused on skin temperature and thermal sensation. Build. Environ. 2019, 154, 44–54. [Google Scholar] [CrossRef]
- Yeom, D.; Choi, J.-H.; Zhu, Y. Investigation of physiological differences between immersive virtual environment and indoor environment in a building. Indoor Built Environ. 2019, 28, 46–62. [Google Scholar] [CrossRef]
- Chinazzo, G.; Chamilothori, K.; Wienold, J.; Andersen, M. The effect of short exposure to coloured light on thermal perception: A study using Virtual Reality. In Proceedings of the Lux Europa 2017, Ljubljana, Slovenia, 18–20 September 2017; pp. 273–279. [Google Scholar]
- Huang, S.; Scurati, G.W.; Graziosi, S. Effects of Coloured Ambient Light on Perceived Temperature for Energy Efficiency: A Preliminary Study in Virtual Reality. 2019, pp. 1–6. Available online: http://lensconference3.org/index.php/program/presentations/item/59-effects-of-coloured-ambient-light-on-perceived-temperature-for-energy-efficiency-a-preliminary-study-in-virtual-reality (accessed on 13 March 2020).
- Fanger, P.O.; Breum, N.O.; Jerking, E. Can Colour and Noise Influence Man’s Thermal Comfort? Ergonomics 1977, 20, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.A.; Rey, P. What’s So Hot about Red? Hum. Factors J. Hum. Factors Ergon. Soc. 1972, 14, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Huebner, G.M.; Shipworth, D.T.; Gauthier, S.; Witzel, C.; Raynham, P.; Chan, W. Saving energy with light? Experimental studies assessing the impact of colour temperature on thermal comfort. Energy Res. Soc. Sci. 2016, 15, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Ziat, M.; Balcer, C.A.; Shirtz, A.; Rolison, T. A Century Later, the Hue-Heat Hypothesis: Does Color Truly Affect Temperature Perception? Springer: Cham, Switzerland, 2016; pp. 273–280. [Google Scholar]
- Wang, H.; Liu, G.; Hu, S.; Liu, C. Experimental investigation about thermal effect of colour on thermal sensation and comfort. Energy Build. 2018, 173, 710–718. [Google Scholar] [CrossRef]
- Toftum, J.; Thorseth, A.; Markvart, J.; Logadóttir, Á. Occupant response to different correlated colour temperatures of white LED lighting. Build. Environ. 2018, 143, 258–268. [Google Scholar] [CrossRef]
- Golasi, I.; Salata, F.; de Lieto Vollaro, E.; Peña-García, A. Influence of lighting colour temperature on indoor thermal perception: A strategy to save energy from the HVAC installations. Energy Build. 2019, 185, 112–122. [Google Scholar] [CrossRef]
- Real-Time Physiological Signals | E4 EDA/GSR Sensor. Available online: https://www.empatica.com/en-eu/research/e4/ (accessed on 25 July 2019).
- Taylor, S.; Jaques, N.; Chen, W.; Fedor, S.; Sano, A.; Picard, R. Automatic identification of artifacts in electrodermal activity data. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1934–1937. [Google Scholar]
- EDA Explorer. Available online: https://eda-explorer.media.mit.edu/ (accessed on 18 March 2019).
- Kingma, B.R.M.; Schweiker, M.; Wagner, A.; van Marken Lichtenbelt, W.D. Exploring internal body heat balance to understand thermal sensation. Build. Res. Inf. 2017, 45, 808–818. [Google Scholar] [CrossRef]
- Marcel Schweiker Comf: Functions for Thermal Comfort Research. Available online: https://cran.r-project.org/package=comf (accessed on 23 July 2019).
- Schweiker, M. comf: An R Package for Thermal Comfort Studies. R J. 2016, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Decree of the President of the Republic of Italy DPR 412/93. Available online: http://www.normattiva.it/urires/N2Ls?urn:nir:stato:legge:1993-08-26;412 (accessed on 13 March 2020).
- ANSI/ASHRAE Standard 55—Thermal Environmental Conditions for Human Occupancy. Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed on 5 December 2019).
- OpenFOAM ®-Official Home of The Open Source Computational Fluid Dynamics (CFD) Toolbox. Available online: https://www.openfoam.com/ (accessed on 25 July 2019).
- Roudsari, M.S.; Pak, M. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13 th Conference of International Building Performance Simulation Association, Chambery, France, 26–28 August 2013. [Google Scholar]
- Cosma, A.C.; Simha, R. Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera. Build. Environ. 2018, 143, 36–47. [Google Scholar] [CrossRef]
- International Organization for Standardization. CEN EN ISO 7730 Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria (ISO 7730:2005); International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Wu, T.; Cui, W.; Cao, B.; Zhu, Y.; Ouyang, Q. Measurements of the additional thermal insulation of aircraft seat with clothing ensembles of different seasons. Build. Environ. 2016, 108, 23–29. [Google Scholar] [CrossRef]
- Havenith, G.; Holmér, I.; Parsons, K. Personal factors in thermal comfort assessment: Clothing properties and metabolic heat production. Energy Build. 2002, 34, 581–591. [Google Scholar] [CrossRef]
- Malchaire, J.; d’Ambrosio Alfano, F.R.; Palella, B.I. Evaluation of the metabolic rate based on the recording of the heart rate. Ind. Health 2017, 55, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Wang, Z.; Ke, K.; Cao, B.; Zhai, Y.; Zhou, X. Human metabolic rate and thermal comfort in buildings: The problem and challenge. Build. Environ. 2018, 131, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.H.; Alsaleem, F.; Rafaie, M. Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation. Build. Environ. 2016, 110, 173–183. [Google Scholar] [CrossRef]
- Van Craenendonck, S.; Lauriks, L.; Vuye, C.; Kampen, J. A review of human thermal comfort experiments in controlled and semi-controlled environments. Renew. Sustain. Energy Rev. 2018, 82, 3365–3378. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- VIVE Hardware. Available online: https://www.vive.com/eu/product/ (accessed on 25 July 2019).
- Unreal Engine 4. Available online: https://www.unrealengine.com/en-US/ (accessed on 25 July 2019).
- Wear Your E4 Wristband—Empatica Support. Available online: https://support.empatica.com/hc/en-us/articles/206374015-Wear-your-E4-wristband (accessed on 21 February 2020).
- Picard, R.W.; Fedor, S.; Ayzenberg, Y. Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry. Emot. Rev. 2016, 8, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Bjørhei, A.; Pedersen, F.T.; Muhammad, S.; Tronstad, C.; Kalvøy, H.; Wojniusz, S.; Pabst, O.; Sütterlin, S. An Investigation on Bilateral Asymmetry in Electrodermal Activity. Front. Behav. Neurosci. 2019, 13, 88. [Google Scholar] [CrossRef] [Green Version]
- The Correlation Coefficient: Definition. Available online: http://www.dmstat1.com/res/TheCorrelationCoefficientDefined.html (accessed on 10 September 2019).
- Linear and Quadratic Discriminant Analysis Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/lda_qda.html (accessed on 30 July 2019).
- LogisticRegression Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html (accessed on 30 July 2019).
- Decision Trees-Scikit-Learn 0.21.2 Documentation. Available online: https://scikit-learn.org/stable/modules/tree.html (accessed on 23 July 2019).
- ExtraTreeClassifier Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html (accessed on 30 July 2019).
- LinearSVC Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html (accessed on 30 July 2019).
- RandomForestClassifier Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 30 July 2019).
- Accuracy Metric Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html (accessed on 30 July 2019).
- KFold Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html (accessed on 30 July 2019).
- Recursive Feature Elimination Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE (accessed on 30 July 2019).
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Feature selection Sklearn’s Documentation. Available online: https://scikit-learn.org/stable/modules/feature_selection.html (accessed on 13 March 2020).
- Sklearn.Metrics.Precision_Recall_Fscore_Support-Scikit-Learn 0.21.3 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html (accessed on 12 September 2019).
- Chinazzo, G.; Wienold, J.; Andersen, M. Daylight affects human thermal perception. Sci. Rep. 2019, 9, 13690. [Google Scholar] [CrossRef] [PubMed]
- Future Home for Future Communities-FHfFC. Available online: http://www.fhffc.it/ (accessed on 11 September 2019).
Sensor | Variable | ID in Figure 3 | Measure Range | Accuracy |
---|---|---|---|---|
Thermo-hygrometer | RH | RH3, RH4 | 0–100% | ±2% |
Thermo-hygrometer | AT | AT3, AT4 | −40 to +60 °C | ±0.1 °C |
Black globe thermometer | RT (derived) | RT1 | −40 to +60 °C | ±0.1 °C |
Hot wire anemometer | AV | AV1, AV2 | 0–5 m/s | ±0.02 m/s |
Hot wire anemometer | AT | AT1, AT2 | −20 to +80 °C | ±0.3 °C |
Thermometer | AT | AT5 | −70 to +500 °C | - |
PPG sensor | HR (derived) | - | - | - |
EDA sensor | EDA | - | 0.01–100 µS | - |
Skin temperature sensor | Tskin | - | −40 to +85 °C | - |
3-axes accelerometer | Accelerations | - | ±2 g | - |
Questionnaire | Experience Period | Questions | Answer Options |
---|---|---|---|
Q1 | After the acclimatization, at the beginning of the test (Part I) | User | 1 to 25 |
Height | Value in [cm] | ||
Weight | Value in [kg] | ||
Age | Value in [y] | ||
Gender | Female, Male | ||
Clothing worn right now? | T-shirt, Long-sleeved shirt, Shirt, Long-sleeved sweatshirt, Sweater, Jacket, Light skirt, Heavy skirt, Light-weight trousers, Normal trousers, Flannel trousers, Slip, Ankle socks, Long socks, Nylon stockings, Thin-soled shoes, Thick-soled shoes, Boots, Other | ||
Q2 | At the beginning (Part I), in the middle (Part II), and at the end of the test (Part III) | Thermal sensation perceived? | Cold, Cool, Slightly cool, Neutral, Slightly warm, Warm, Hot |
How satisfied are you with the humidity of the indoor environment? | (Very satisfied) 1 to 7 (Very dissatisfied) | ||
How satisfied are you with the indoor air speed? | (Very satisfied) 1 to 7 (Very dissatisfied) | ||
How satisfied are you with the indoor temperature? | (Very satisfied) 1 to 7 (Very dissatisfied) | ||
Describe your current emotional state | Relaxed, Happy, Sad, Angry, Agitated |
Age [y] | Weight [kg] | Height [cm] | Iclo [clo] | Metst [met] | MetBMR [met] |
---|---|---|---|---|---|
Avg ± std | Avg ± std | Avg ± std | Avg ± std | Avg ± std | Avg ± std |
45.12 ± 9.36 | 69.30 ± 16.09 | 171.64 ± 7.43 | 0.94 ± 0.09 | 1.20 ± 0.00 | 1.42 ± 0.13 |
Number | Data Label | Description | Unit | Number of Non-Null Value | Number of Data for which BL = 1 |
---|---|---|---|---|---|
0 | Z-axis acceleration | acceleration along the Z-axis | [g] | 22,575 | 14421 |
1 | Y-axis acceleration | acceleration along the Y-axis | [g] | 22,575 | 14,421 |
2 | X-axis acceleration | acceleration along the X-axis | [g] | 22,575 | 14,421 |
3 | Tskin | Skin temperature | [°C] | 22,575 | 14,421 |
4 | EDA | Electrodermal activity | [μS] | 22,575 | 14,421 |
5 | HR | Heart rate | [bpm] | 22,575 | 14,421 |
6 | Binary Labels | Classification label | - | 22,575 | 14,421 |
7 | Color | Setting of the environment | - | 22,575 | 14421 |
8 | User | Number identifying the user | - | 22,575 | 14,421 |
9 | RvsVR | Type of setting: Real or VR | - | 22,575 | 14,421 |
10 | SXvsDX | Biometric origin: left or right smartband data | - | 22,575 | 14,421 |
11 | PTCP_R | Personal Thermal Comfort Perception in real environment | - | 11,347 | 7295 |
12 | PTCP_VR | Personal Thermal Comfort Perception in virtual reality | - | 11,228 | 7126 |
13 | RH3 | See Table 1 | [%] | 22,575 | 14,421 |
14 | RH4 | See Table 1 | [%] | 22,575 | 14,421 |
15 | RH_avg | Average value between RH3 and RH4 | [%] | 22,575 | 14,421 |
16 | AT3 | See Table 1 | [°C] | 22,575 | 14,421 |
17 | AT4 | See Table 1 | [°C] | 22,575 | 14,421 |
18 | T_avg_2 | Average value between AT3 and AT4 | [°C] | 22,575 | 14,421 |
19 | RT1 | See Table 1 | [°C] | 22,575 | 14,421 |
20 | AV1 | See Table 1 | [m/s] | 22,575 | 14,421 |
21 | AT1 | See Table 1 | [°C] | 22,575 | 14,421 |
22 | T_avg_3 | Average value among AT3, AT4, and AT1 | [°C] | 22,575 | 14,421 |
23 | To | Operative temperature defined as the average value between RT1 and T_avg_4 | [°C] | 22,575 | 14,421 |
24 | AV2 | See Table 1 | [m/s] | 22,575 | 14,421 |
25 | AT2 | See Table 1 | [°C] | 22,575 | 14,421 |
26 | T_avg_4 | Average value among AT1, AT2, AT3, and AT4 | [°C] | 22,575 | 14,421 |
27 | PMV | Predicted Mean Vote | - | 22,575 | 14,421 |
28 | PMVMetBMR | PMV defined considering specific Met values | - | 22,575 | 14,421 |
29 | dTNZ | Distance to ThermoNeutral Zone | - | 22,575 | 14,421 |
22 Features | Accuracy | 11 Features | Accuracy | 6 Features | Accuracy | 3 Features | Accuracy | |
---|---|---|---|---|---|---|---|---|
Algorithms | Avg ± std | Avg ± std | Avg ± std | Avg ± std | ||||
LDA | [0, 1, 2, 3, 4, 5, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] | 0.712 ± 0.018 | [1, 7, 16, 17, 18, 19, 20, 21, 22, 23, 24] | 0.564 ± 0.023 | [16, 19, 20, 22, 23, 24] | 0.507 ± 0.026 | [20, 23, 24] | 0.499 ± 0.036 |
LR | 0.716* ± 0.016 | [0, 1, 2, 7, 16, 17, 18, 19, 20, 21, 23, 25] | 0.581 ± 0.024 | [16, 17, 18, 19, 20, 21, 23] | 0.511 ± 0.034 | [19, 20, 23] | 0.512 ± 0.034 | |
CART | 0.987 ± 0.007 | [3, 4, 5, 7, 8, 14, 17, 18, 19, 20, 21] | 0.993 ± 0.005 | [3, 5, 7, 8, 14, 17] | 0.996 ± 0.003 | [3, 14, 17] | 0.973 ± 0.005 | |
ETC | 0.991 ± 0.004 | [3, 7, 8, 14, 15, 17, 18, 21, 23, 25, 26] | 0.997 ± 0.002 | [7, 8, 13, 17, 18, 19] | 0.998 ± 0.002 | [8, 14, 25] | 0.977 ± 0.004 | |
LSVC | 0.723* ± 0.016 | [0, 1, 7, 16, 17, 19, 20, 21, 23, 24, 25] | 0.449 ± 0.106 | [16, 17, 19, 20, 23, 24] | 0.480 ± 0.057 | [20, 23, 24] | 0.480 ± 0.082 | |
RFC | 0.996 ± 0.003 | [3, 7, 8, 13, 14, 15, 17, 18, 21, 25, 26] | 0.998 ± 0.003 | [7, 8, 14, 17, 25, 26] | 0.998 ± 0.003 | [14, 17, 25] | 0.979 ± 0.008 |
Algorithms | Hyperparameters | Range |
---|---|---|
LR | Solver Penalty C_value | [‘newton-cg’, ‘lbfgs’, ‘liblinear’] [‘l1’, ‘l2’, ‘elasticnet’, ‘none’] [100, 10, 1.0, 0.1, 0.01] |
LSVC | Penalty C_value | [‘l1’, ‘l2’] [100, 10, 1.0, 0.1, 0.01] |
Algorithm | PTCP | Precision | Recall | f1-Score | Support |
---|---|---|---|---|---|
ETC | –1 | 0.99 | 1.00 | 1.00 | 763 |
0 | 1.00 | 1.00 | 1.00 | 1424 | |
1 | 1.00 | 1.00 | 1.00 | 450 | |
2 | 1.00 | 0.99 | 0.99 | 281 |
22 Features | Accuracy | 11 Features | Accuracy | 6 Features | Accuracy | 3 Features | Accuracy | |
---|---|---|---|---|---|---|---|---|
Algorithms | Avg ± std | Avg ± std | Avg ± std | Avg ± std | ||||
LDA | [0, 1, 2, 3, 4, 5, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] | 0.715 ± 0.023 | [0, 4, 16, 17, 19, 20, 21, 22, 23, 24, 26] | 0.605 ± 0.026 | [4, 16, 19, 20, 23, 24] | 0.559 ± 0.028 | [16, 19, 24] | 0.539 ± 0.029 |
LR | 0.756* ± 0.022 | [1, 7, 14, 15, 16, 19, 20, 21, 23, 24, 25] | 0.625 ± 0.015 | [1, 16, 19, 20, 21, 23] | 0.525 ± 0.024 | [16, 19, 21] | 0.517 ± 0.022 | |
CART | 0.992 ± 0.004 | [0, 2, 3, 4, 7, 8, 14, 15, 17, 18, 23] | 0.993 ± 0.003 | [2, 4, 7, 8, 15, 17] | 0.994 ± 0.003 | [8, 15, 17] | 0.981 ± 0.007 | |
ETC | 0.994 ± 0.003 | [3, 7, 8, 13, 14, 15, 18, 19, 21, 22, 25] | 0.997 ± 0.003 | [7, 8, 13, 14, 18, 25] | 0.997 ± 0.002 | [8, 15, 25] | 0.982 ± 0.006 | |
LSVC | 0.673* ± 0.019 | [1, 7, 14, 16, 19, 20, 21, 22, 23, 24, 25] | 0.476 ± 0.059 | [16, 19, 20, 21, 23, 24] | 0.439 ± 0.130 | [20, 21, 24] | 0.451 ± 0.065 | |
RFC | 0.995 ± 0.004 | [3, 7, 8, 13, 14, 15, 17, 18, 21, 25, 26] | 0.996 ± 0.003 | [7, 8, 13, 15, 17, 21] | 0.996 ± 0.003 | [8, 15, 17] | 0.984 ± 0.007 |
Algorithm | PTCP | Precision | Recall | f1-Score | Support |
---|---|---|---|---|---|
ETC | −1 | 1.00 | 1.00 | 1.00 | 540 |
0 | 1.00 | 1.00 | 1.00 | 1165 | |
1 | 1.00 | 1.00 | 1.00 | 1078 | |
2 | 0.97 | 1.00 | 0.99 | 68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamone, F.; Bellazzi, A.; Belussi, L.; Damato, G.; Danza, L.; Dell’Aquila, F.; Ghellere, M.; Megale, V.; Meroni, I.; Vitaletti, W. Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches. Sensors 2020, 20, 1627. https://doi.org/10.3390/s20061627
Salamone F, Bellazzi A, Belussi L, Damato G, Danza L, Dell’Aquila F, Ghellere M, Megale V, Meroni I, Vitaletti W. Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches. Sensors. 2020; 20(6):1627. https://doi.org/10.3390/s20061627
Chicago/Turabian StyleSalamone, Francesco, Alice Bellazzi, Lorenzo Belussi, Gianfranco Damato, Ludovico Danza, Federico Dell’Aquila, Matteo Ghellere, Valentino Megale, Italo Meroni, and Walter Vitaletti. 2020. "Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches" Sensors 20, no. 6: 1627. https://doi.org/10.3390/s20061627
APA StyleSalamone, F., Bellazzi, A., Belussi, L., Damato, G., Danza, L., Dell’Aquila, F., Ghellere, M., Megale, V., Meroni, I., & Vitaletti, W. (2020). Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches. Sensors, 20(6), 1627. https://doi.org/10.3390/s20061627