Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks
Abstract
:1. Introduction
2. MLP–CNN Framework
3. Concrete Crack Identification Based on CNN
3.1. Overall Structure
3.1.1. Feature Extraction Layer
3.1.2. Final Layer
3.1.3. Training Algorithms
3.2. Construction of the CPD Network
3.2.1. Preparation of Data Sets
3.2.2. Structure of the CPD Network
3.3. Crack Position Detection Using Sliding Window
3.4. Construction of the CTI Network
3.4.1. Preparation of Data Sets
3.4.2. Structure of CTI Network
4. Concrete Crack Recognition Based on the MLP–CNN Framework
4.1. Comparison among Feature Extraction Algorithms
4.2. Crack Position Detection Subject to Moderate Noise Level
4.3. Crack Type Identification Subject to Moderate Noise Level
4.4. Crack Position Detection Subject to Severe Noise Influence
4.4.1. Light Spots
4.4.2. Blurs
4.4.3. Surface Anomalies
4.5. Crack Type Identification Subject to Severe Noise Influence
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, G.; Ma, N.; Li, H.-N. Applications of shape memory alloys in civil structures. Eng. Struct. 2006, 28, 1266–1274. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.-L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 033001. [Google Scholar] [CrossRef]
- Bayat, M.; Pakar, I.; Domairry, G. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review. Lat. Am. J. Solids Struct. 2012, 9, 1–93. [Google Scholar] [CrossRef] [Green Version]
- Phares, B.M.; Rolander, D.D.; Graybeal, B.A.; Washer, G.A. Reliability of visual bridge inspection. Public Roads 2001, 64. [Google Scholar]
- Chen, P.-H.; Shen, H.-K.; Lei, C.-Y.; Chang, L.-M. Support-vector-machine-based method for automated steel bridge rust assessment. Autom. Constr. 2012, 23, 9–19. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. ManCybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Vala, H.J.; Baxi, A. A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (Ijarcet) 2013, 2, 387–389. [Google Scholar]
- Kirschke, K.; Velinsky, S. Histogram-based approach for automated pavement-crack sensing. J. Transp. Eng. 1992, 118, 700–710. [Google Scholar] [CrossRef]
- Oh, H.; Garrick, N.W.; Achenie, L.E. Segmentation algorithm using iterative clipping for processing noisy pavement images. In Proceedings of the Imaging Technologies: Techniques and Applications in Civil Engineering. Second International ConferenceEngineering Foundation; and Imaging Technologies Committee of the Technical Council on Computer Practices, Davos, Switzerland, 25–30 May 1997; American Society of Civil Engineers: Reston, VA, USA, 1998. [Google Scholar]
- Bonnet, N.; Cutrona, J.; Herbin, M. A ‘no-threshold’histogram-based image segmentation method. Pattern Recognit. 2002, 35, 2319–2322. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.L. Automatic Road Crack Segmentation using Entropy and Image Dynamic Thresholding. In Proceedings of the 2009 17th European Signal Processing Conference, Glasgow, UK, 24–28 August 2009; pp. 622–626. [Google Scholar]
- Al-Amri, S.S.; Kalyankar, N.V. Image segmentation by using threshold techniques. arXiv 2010, arXiv:1005.4020. [Google Scholar]
- Migdal, J.; Grimson, W.E.L. Background subtraction using markov thresholds. In Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05)-Volume 1, Breckenridge, CO, USA, 5–7 January 2005; pp. 58–65. [Google Scholar]
- Muthukrishnan, R.; Radha, M. Edge detection techniques for image segmentation. Int. J. Comput. Sci. Inf. Technol. 2011, 3, 259. [Google Scholar]
- Ziou, D.; Tabbone, S. Edge detection techniques-an overview. Pattern Recognit. Image Anal. C/C Raspoznavaniye Obraz. I Anal. Izobr. 1998, 8, 537–559. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar]
- Cha, Y.-J.; You, K.; Choi, W. Vision-based detection of loosened bolts using the Hough transform and support vector machines. Autom. Constr. 2016, 71, 181–188. [Google Scholar]
- Ayenu-Prah, A.; Attoh-Okine, N. Evaluating pavement cracks with bidimensional empirical mode decomposition. Eurasip J. Adv. Signal Process. 2008, 2008, 1–7. [Google Scholar]
- Acharya, T.; Tsai, P.-S. Edge-detection Based Noise Removal Algorithm. US Patent 6,229,578, 8 May 2001. [Google Scholar]
- Maode, Y.; Shaobo, B.; Kun, X.; Yuyao, H. Pavement crack detection and analysis for high-grade highway. In Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, Xi’an, China, 16–18 August 2007; pp. 4-548–4-552. [Google Scholar]
- Zhou, J.; Huang, P.S.; Chiang, F.-P. Wavelet-based pavement distress detection and evaluation. Opt. Eng. 2006, 45, 027007. [Google Scholar]
- Knezevic, M.; Cvetkovska, M.; Hanák, T.; Braganca, L.; Soltesz, A. Artificial Neural Networks and Fuzzy Neural Networks for Solving Civil Engineering Problems. Complexity 2018, 2018. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W. Vision-based concrete crack detection using a convolutional neural network. In Dynamics of Civil Structures; Springer: Cham, Switzerland, 2017; Volume 2, pp. 71–73. [Google Scholar]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the ICDAR, Edinburgh, UK, 3–6 August 2003; IEEE Computer Society: Washington, DC, USA, 2003; Volume 3, pp. 958–962. [Google Scholar]
- Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhang, H.; Piramuthu, R.; Jagadeesh, V.; DeCoste, D.; Di, W.; Yu, Y. HD-CNN: Hierarchical deep convolutional neural networks for large scale visual recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2740–2748. [Google Scholar]
- Radenović, F.; Tolias, G.; Chum, O. CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples. In Proceedings of the European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 3–20. [Google Scholar]
- Chen, F.-C.; Jahanshahi, M.R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion. IEEE Trans. Ind. Electron. 2017, 65, 4392–4400. [Google Scholar] [CrossRef]
- Browne, M.; Ghidary, S.S. Convolutional neural networks for image processing: An application in robot vision. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Melbourne, Australia, 4–7 December 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 641–652. [Google Scholar]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S. A method of crack detection based on convolutional neural networks. In Proceedings of the 11th International Workshop on Structural Health Monitoring, Menlo Park, CA, USA, 12–14 September 2017; pp. 978–984. [Google Scholar]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Gavilán, M.; Balcones, D.; Marcos, O.; Llorca, D.F.; Sotelo, M.A.; Parra, I.; Ocaña, M.; Aliseda, P.; Yarza, P.; Amírola, A. Adaptive road crack detection system by pavement classification. Sensors 2011, 11, 9628–9657. [Google Scholar] [PubMed]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [PubMed] [Green Version]
- Fries, R.; Modestino, J. Image enhancement by stochastic homomorphic filtering. IEEE Trans. Acoust. SpeechSignal Process. 1979, 27, 625–637. [Google Scholar]
- Lee, Y.-L.; Park, H.-W. Signal Adaptive Filtering Method and Signal Adaptive Filter for Reducing Blocking Effect and Ringing Noise. Google Patents, U.S. Patent No. 6,259,823, 10 July 2001. [Google Scholar]
- Ma, Z.; He, K.; Wei, Y.; Sun, J.; Wu, E. Constant time weighted median filtering for stereo matching and beyond. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 49–56. [Google Scholar]
- Ioannou, Y.; Robertson, D.; Cipolla, R.; Criminisi, A. Deep roots: Improving cnn efficiency with hierarchical filter groups. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1231–1240. [Google Scholar]
- Miao, S.; Wang, Z.J.; Liao, R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med Imaging 2016, 35, 1352–1363. [Google Scholar]
- Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993, 6, 861–867. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in neural information processing systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Jang, E.; Gu, S.; Poole, B. Categorical reparameterization with gumbel-softmax. arXiv 2016, arXiv:1611.01144. [Google Scholar]
- Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.; Hamilton, N.; Hullender, G. Learning to rank using gradient descent. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 89–96. [Google Scholar]
- Krizhevsky, A.; Hinton, G. Convolutional deep belief networks on cifar-10. Unpubl. Manuscr. 2010, 40, 1–9. [Google Scholar]
- Schmugge, S.J.; Rice, L.; Nguyen, N.R.; Lindberg, J.; Grizzi, R.; Joffe, C.; Shin, M.C. Detection of cracks in nuclear power plant using spatial-temporal grouping of local patches. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–7. [Google Scholar]
- Hay, A. The derivation of global estimates from a confusion matrix. Int. J. Remote Sens. 1988, 9, 1395–1398. [Google Scholar]
CNN | Test accuracy (%) | Time |
---|---|---|
Alexnet | 98.6 | 140 min 7 s |
Lenet5 | 45.2 | 1 min 25 s |
CIFAR10 | 94.6 | 8 min 12 s |
Layer | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 |
Operator | Input | Conv | ReLU | MP | Conv | ReLU | MP | Conv |
h/w/d | 32/32/3 | 5/5/32 | - | 3/3/- | 5/5/32 | - | 3/3/- | 5/5/64 |
Stride | - | 1 | - | 2 | 1 | - | 2 | 1 |
L9 | L10 | Layer | L11 | L12 | L13 | L14 | L15 | L16 |
ReLU | MP | Operator | FC | ReLU | D | FC | S | Output |
- | 3/3/- | NOI | 576 | - | - | 256 | - | 2 |
- | 2 | NOO | 256 | - | - | 2 | - | 2 |
Layer | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 |
Operator | Input | Conv | ReLU | BN | MP | Conv | ReLU | BN |
h/w/d | 227/227/3 | 11/11/96 | - | - | 3/3/- | 5/5/128 | - | - |
Stride | - | 4 | - | - | 2 | 1 | - | - |
L9 | L10 | L11 | L12 | L13 | L14 | L15 | L16 | Layer |
MP | Conv | ReLU | Conv | ReLU | Conv | ReLU | MP | Operator |
3/3/- | 3/3/384 | - | 3/3/192 | - | 3/3/128 | - | 3/3/- | NOI |
2 | 1 | - | 1 | - | 1 | - | 2 | NOO |
L17 | L18 | L19 | L20 | L21 | L22 | L23 | L24 | L25 |
FC | ReLU | D | FC | ReLU | D | FC | S | Output |
9216 | - | - | 4096 | - | - | 4096 | - | 5 |
4096 | - | - | 4096 | - | - | 5 | - | 5 |
Test Set | Moderate Noise | Light Spot | Blur | Surface Anomaly |
---|---|---|---|---|
Size of each set | 577 | 80 | 80 | 120 |
Noise Condition | Accuracy of CTI Network (%) | Accuracy of MLP–CNN (%) |
---|---|---|
Moderate noise | 99.3 | 98.7 |
Light spot | 86.5 | 89.3 |
Blur | 82.6 | 88.0 |
Surface anomaly | 89.6 | 94.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, R.; Xu, H.; Wang, Z.; Shen, L.; Cao, M.; Liu, T.; Novák, D. Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks. Sensors 2020, 20, 2021. https://doi.org/10.3390/s20072021
Fu R, Xu H, Wang Z, Shen L, Cao M, Liu T, Novák D. Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks. Sensors. 2020; 20(7):2021. https://doi.org/10.3390/s20072021
Chicago/Turabian StyleFu, Ronghua, Hao Xu, Zijian Wang, Lei Shen, Maosen Cao, Tongwei Liu, and Drahomír Novák. 2020. "Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks" Sensors 20, no. 7: 2021. https://doi.org/10.3390/s20072021
APA StyleFu, R., Xu, H., Wang, Z., Shen, L., Cao, M., Liu, T., & Novák, D. (2020). Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks. Sensors, 20(7), 2021. https://doi.org/10.3390/s20072021