An Indoor DFEC Ranging Method for Homologous Base Station Based on GPS L1 and BeiDou B1 Signals
Abstract
:1. Introduction
2. DFEC Ranging Principle
2.1. Overview
2.2. Proposed Method
Algorithm 1. |
1: Initialization Parameters: Signal transmitting base station coordinates; |
Ground calibration point coordinates; |
Ground test point coordinates; |
Initial phase calibration: , |
2: while not empty do |
3: Group by frequency characteristics ; |
4: Cycle count to distance conversion ; |
5: Get the distance difference between frequencies ; |
6: Phase accumulation span detection: |
if |
; |
else |
; |
end |
7: Calculate the whole cycles : |
8: Calculate the distance |
; |
9: end while |
2.3. Cumulative Over-The-Cycle Detection
2.4. Frequency Selection Analysis
3. Implementations and Evaluation
3.1. Wired Connection Test
3.2. Wireless Environment Test
4. Positioning Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmed, A.; Arablouei, R.; De Hoog, F.; Kusy, B.; Jurdak, R. Multi-Radio Data Fusion for Indoor Localization Using Bluetooth and WiFi. Available online: https://www.semanticscholar.org/paper/Multi-radio-Data-Fusion-for-Indoor-Localization-and-Ahmed-Arablouei/886075d4ec08dff98a93ecd32ca358e4e7ce7b90 (accessed on 12 April 2020).
- Ren, J.; Huang, S.; Song, W.; Han, J. A Novel Indoor Positioning Algorithm for Wireless Sensor Network Based on Received Signal Strength Indicator Filtering and Improved Taylor Series Expansion. Trait. Signal 2019, 36, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Sharp, I.; Yu, K. Indoor WiFi Positioning. In Adaptive Interference Mitigation in GNSS; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 219–240. [Google Scholar]
- Yang, C.; Shao, H.-R. WiFi-based indoor positioning. IEEE Commun. Mag. 2015, 53, 150–157. [Google Scholar] [CrossRef]
- Vazhenin, N.A.; Veitsel, A.V.; Veitsel, V.V.; Serkin, F.B. Position Determination of a Mobile Station Using Modified Wi-Fi Signals. U.S. Patent 10,274,580, 30 April 2019. [Google Scholar]
- Wang, B.; Liu, X.; Yu, B.; Jia, R.; Gan, X. An Improved WiFi Positioning Method Based on Fingerprint Clustering and Signal Weighted Euclidean Distance. Sensors 2019, 19, 2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Tao, Z.; Li, X. High efficiency wifi fingerprint localization based on distance costraints. In Proceedings of the ACM Turing Celebration Conference—China, ACM TURC ’19, Chengdu, China, 17–19 May 2019; pp. 1–5. [Google Scholar]
- Zhou, M.; Dolgov, M.; Liu, Y.; Wang, Y. WIFI/PDR indoor integrated positioning system in a multi-floor environment. EAI Endorsed Trans. Cogn. Commun. 2019, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Pan, Y.; Ye, F.; Peng, X.; Liu, Z.; Pan, Y. Indoor Smartphone Localization: A Hybrid WiFi RTT-RSS Ranging Approach. IEEE Access 2019, 7, 176767–176781. [Google Scholar] [CrossRef]
- Mocan, A.; Ciascai, I. Analysis of positioning errors for LED. In Proceedings of the 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME), Cluj Napoca, Romania, 23–26 October 2019; pp. 127–130. [Google Scholar]
- Plets, D.; Bastiaens, S.; Martens, L.; Joseph, W. An Analysis of the Impact of LED Tilt on Visible Light Positioning Accuracy. Electronics 2019, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Plets, D.; Bastiaens, S.; Martens, L.; Joseph, W.; Stevens, N. On the impact of LED power uncertainty on the accuracy of 2D and 3D Visible Light Positioning. Optik 2019, 195, 163027. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, D.-R.; Yang, S.-H.; Son, Y.-H.; Han, S.-K. An Indoor Visible Light Communication Positioning System Using a RF Carrier Allocation Technique. J. Light. Technol. 2013, 31, 134–144. [Google Scholar] [CrossRef]
- Wang, Q.; Sekercioglu, A.; Neild, A.; Armstrong, J. Position Accuracy of Time-of-Arrival Based Ranging Using Visible Light With Application in Indoor Localization Systems. J. Light. Technol. 2013, 31, 3302–3308. [Google Scholar] [CrossRef]
- Peng, Q.; Guan, W.; Wu, Y.; Cai, Y.; Xie, C.; Wang, P. Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication. Opt. Eng. 2018, 57, 1. [Google Scholar] [CrossRef]
- Wang, T.; Yao, Z.; Lu, M. On-the-fly ambiguity resolution involving only carrier phase measurements for stand-alone ground-based positioning systems. GPS Solut. 2019, 23, 36. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, S.; Wang, Y. Linearization Error Analysis of Observation Equations in Pseudo Satellite Positioning System. In Proceedings of the 2019 China Satellite Navigation Conference (CSNC), Lecture Notes in Electrical Engineering, Beijing, China, 22–25 May 2020. [Google Scholar]
- Li, X.; Huang, G.; Zhang, P.; Zhang, Q. Reliable Indoor Pseudolite Positioning Based on a Robust Estimation and Partial Ambiguity Resolution Method. Sensors 2019, 19, 3692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, P.; Huang, G.; Zhang, Q.; Guo, J.; Zhao, Y.; Zhao, Q. Performance analysis of indoor pseudolite positioning based on the unscented Kalman filter. GPS Solut. 2019, 23, 79. [Google Scholar] [CrossRef]
- Huang, L.; Gan, X.; Yu, B.; Zhang, H.; Li, S.; Chen, J.; Liang, X.; Wang, B. An Innovative Fingerprint Location Algorithm for Indoor Positioning Based on Array Pseudolite. Sensors 2019, 19, 4420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, X.; Yu, B.; Huang, L.; Jia, R.; Zhang, H.; Sheng, C.; Fan, G.; Wang, B. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System. Sensors 2019, 19, 4580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Pan, S.; Sheng, C.; Gan, X.; Yu, B.; Huang, L.; Li, Y. An Indoor DFEC Ranging Method for Homologous Base Station Based on GPS L1 and BeiDou B1 Signals. Sensors 2020, 20, 2225. https://doi.org/10.3390/s20082225
Zhang H, Pan S, Sheng C, Gan X, Yu B, Huang L, Li Y. An Indoor DFEC Ranging Method for Homologous Base Station Based on GPS L1 and BeiDou B1 Signals. Sensors. 2020; 20(8):2225. https://doi.org/10.3390/s20082225
Chicago/Turabian StyleZhang, Heng, Shuguo Pan, Chuanzhen Sheng, Xingli Gan, Baoguo Yu, Lu Huang, and Yaning Li. 2020. "An Indoor DFEC Ranging Method for Homologous Base Station Based on GPS L1 and BeiDou B1 Signals" Sensors 20, no. 8: 2225. https://doi.org/10.3390/s20082225
APA StyleZhang, H., Pan, S., Sheng, C., Gan, X., Yu, B., Huang, L., & Li, Y. (2020). An Indoor DFEC Ranging Method for Homologous Base Station Based on GPS L1 and BeiDou B1 Signals. Sensors, 20(8), 2225. https://doi.org/10.3390/s20082225