The Power of Assemblies at Interfaces: Nanosensor Platforms Based on Synthetic Receptor Membranes
Abstract
:1. Introduction
2. Installation of Molecular Assemblies at the Interfaces
2.1. Functionalization of Interfaces by Using Langmuir–Blodgett Films
2.2. Decoration of Solid Surfaces with Self-Assembled Monolayers
3. Characterization Methods for Molecular Assemblies at the Interfaces
3.1. Contact Angle Goniometry
3.2. Elemental Analyses of Molecular Assemblies
3.3. Direct Observation of the Assemblies Installed at the Interfaces
3.4. Determination of Electrical Potential at the Interfaces
3.5. Characterization of Decorated Interfaces by Other Methods
4. Synthetic Receptor Membrane-Based Sensing Platforms for Chemical Bio-Analyses
4.1. Colorimetry or Fluorometry-Based Sensors
4.2. Transduction of Sensing Information Based on “Invisible” Changes in Optical Signals: Toward the Development of High-Performance Sensors
4.3. Electrochemical/Electrical Detection of Analytes for the Achievement of On-site Quantitative Sensors
4.4. Nanosensor Platforms Based on Other Physical Parameters
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AFM | Atomic Force Microscope |
ATR | Attenuated Total Reflection |
BSA | Bovine Serum Albumin |
CAG | Contact Angle Goniometry |
CV | Cyclic Voltammetry |
DPA | Dipicolylamine |
ESCA | Electron Spectroscopy for Chemical Analysis |
FET | Field-effect Transistor |
FT-IR | Fourier Transform Infrared Spectroscopy |
IRAS | Infrared Reflection-Absorption Spectroscopy |
KFM | Kelvin Force Microscope |
LB | Langmuir–Blodgett |
LbL | Layer-by-Layer |
LOD | Limit of Detection |
MeCN | Acetonitrile |
PBA | Phenylboronic Acid |
PYS | Photoemission Yield Spectroscopy |
QCM | Quartz Crystal Microbalance |
SAM | Self-assembled monolayer |
SAW | Surface Acoustic Wave |
SERS | Surface-enhanced Raman Scattering |
SPR | Surface Plasmon Resonance |
STM | Scanning Tunneling Microscope |
SWV | Square Wave Voltammetry |
TAMRA | 5-Carboxytetramethylrhodamine |
TESBA | 4-(Triethoxysilyl)butyraldehyde |
UPS | UV Photoemission Spectroscopy |
VOC | Volatile Organic Compound |
XPS | X-ray Photoelectron Spectroscopy |
References
- Lo Conte, L.; Chothia, C.; Janin, J. The Atomic Structure of Protein-Protein Recognition Sites. J. Mol. Biol. 1999, 285, 2177–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, J.M.; Tymoczko, J.L.; Gatto, G.J., Jr.; Stryer, L. Biochemistry, 8th ed.; W. H. Freeman: New York, NY, USA, 2015. [Google Scholar]
- Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives; Wiley-VCH: Weinheim, Germany, 1995. [Google Scholar]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef] [PubMed]
- Anslyn, E.V. Supramolecular Analytical Chemistry. J. Org. Chem. 2007, 72, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Roya, D.; Park, J.W. Spatially nanoscale-controlled functional surfaces toward efficient bioactive platforms. J. Mater. Chem. B 2015, 3, 5135–5149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogaki, R.; Hashim, P.K.; Okuro, K.; Aida, T. Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chem. Soc. Rev. 2017, 46, 6480–6491. [Google Scholar] [CrossRef]
- Sakurai, M.; Tamagawa, H.; Inoue, Y.; Ariga, K.; Kunitake, T. Theoretical Study of Intermolecular Interaction at the Lipid−Water Interface. 1. Quantum Chemical Analysis Using a Reaction Field Theory. J. Phys. Chem. B 1997, 101, 4810–4816. [Google Scholar] [CrossRef]
- Jang, S.S.; Jang, Y.H.; Kim, Y.-H.; Goddard, W.A.; Choi, J.W.; Heath, J.R.; Laursen, B.W.; Flood, A.H.; Stoddart, J.F.; Nørgaard, K.; et al. Molecular Dynamics Simulation of Amphiphilic Bistable [2]Rotaxane Langmuir Monolayers at the Air/Water Interface. J. Am. Chem. Soc. 2005, 127, 14804–14816. [Google Scholar] [CrossRef]
- Yao, H.; Ke, H.; Zhang, X.; Pan, S.-J.; Li, M.-S.; Yang, L.-P.; Schreckenbach, G.; Jiang, W. Molecular Recognition of Hydrophilic Molecules in Water by Combining the Hydrophobic Effect with Hydrogen Bonding. J. Am. Chem. Soc. 2018, 140, 13466–13477. [Google Scholar] [CrossRef]
- Choi, S.-K. Synthetic Multivalent Molecules: Concepts and Biomedical Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J.P. 25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and its Critical Role in Materials Science. Adv. Mater. 2013, 25, 6477–6512. [Google Scholar] [CrossRef]
- Kurniawan, J.; de Souza, J.F.V.; Dang, A.T.; Liu, G.-Y.; Kuhl, T.L. Preparation and Characterization of Solid-Supported Lipid Bilayers Formed by Langmuir–Blodgett Deposition: A Tutorial. Langmuir 2018, 34, 15622–15639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, D.; Kwak, J.-W.; Maeng, W.J.; Kim, H.; Park, J.W. Dendron-Modified Polystyrene Microtiter Plate: Surface Characterization with Picoforce AFM and Influence of Spacing between Immobilized Amyloid Beta Proteins. Langmuir 2008, 24, 14296–14305. [Google Scholar] [CrossRef] [PubMed]
- Onda, M.; Yoshihara, K.; Koyano, H.; Ariga, K.; Kunitake, T. Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces. J. Am. Chem. Soc. 1996, 118, 8524–8530. [Google Scholar] [CrossRef]
- Sasaki, D.Y.; Kurihara, K.; Kunitake, T. Specific, Multiple-Point Binding of ATP and AMP to a Guanidinium-Functionalized Monolayer. J. Am. Chem. Soc. 1991, 113, 9685–9686. [Google Scholar] [CrossRef]
- Tamagawa, H.; Sakurai, M.; Inoue, Y.; Ariga, K.; Kunitake, T. Theoretical Study of Intermolecular Interaction at the Lipid−Water Interface. 2. Analysis Based on the Poisson−Boltzmann Equation. J. Phys. Chem. B 1997, 101, 4817–4825. [Google Scholar] [CrossRef]
- Gao, R.; Fang, X.; Yan, D. Recent developments in stimuli-responsive luminescent films. J. Mater. Chem. C 2019, 7, 3399–3412. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef]
- Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 2017, 46, 40–71. [Google Scholar] [CrossRef]
- Zhou, Y.; Chiu, C.-W.; Liang, H. Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview. Sensors 2012, 12, 15036–15062. [Google Scholar] [CrossRef] [Green Version]
- Butt, H.-J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, J.H.; Gibb, B.C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015, 44, 547–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuckovac, M.; Latikka, M.; Liu, K.; Huhtamäkia, T.; Ras, R.H.A. Uncertainties in contact angle goniometry. Soft Matter 2019, 15, 7089–7096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, C.M.; Smyth, M.R.; Barnes, C.J. HREELS, XPS, and Electrochemical Study of Benzenethiol Adsorption on Au(111). Langmuir 1999, 15, 116–126. [Google Scholar] [CrossRef]
- Barriet, D.; Yam, C.M.; Shmakova, O.E.; Jamison, A.C.; Lee, T.R. 4-Mercaptophenylboronic Acid SAMs on Gold: Comparison with SAMs Derived from Thiophenol, 4-Mercaptophenol, and 4-Mercaptobenzoic Acid. Langmuir 2007, 23, 8866–8875. [Google Scholar] [CrossRef] [PubMed]
- Perro, A.; Lebourdon, G.; Henry, S.; Lecomte, S.; Servant, L.; Marre, S. Combining microfluidics and FT-IR spectroscopy: Towards spatially resolved information on chemical processes. React. Chem. Eng. 2016, 1, 577–594. [Google Scholar] [CrossRef]
- Hoeben, F.J.M.; Jonkheijm, P.; Meijer, E.W.; Schenning, A.P.H.J. About Supramolecular Assemblies of π-Conjugated Systems. Chem. Rev. 2005, 105, 1491–1546. [Google Scholar] [CrossRef]
- Rusu, P.C.; Brocks, G. Work functions of self-assembled monolayers on metal surfaces by first-principles calculations. Phys. Rev. B 2006, 74, 073414. [Google Scholar] [CrossRef] [Green Version]
- Alloway, D.M.; Hofmann, M.; Smith, D.L.; Gruhn, N.E.; Graham, A.L.; Colorado, R., Jr.; Wysocki, V.H.; Lee, T.R.; Lee, P.A.; Armstrong, N.R. Interface Dipoles Arising from Self-Assembled Monolayers on Gold: UV-Photoemission Studies of Alkanethiols and Partially Fluorinated Alkanethiols. J. Phys. Chem. B 2003, 107, 11690–11699. [Google Scholar] [CrossRef]
- Lacher, S.; Matsuo, Y.; Nakamura, E. Molecular and Supramolecular Control of the Work Function of an Inorganic Electrode with Self-Assembled Monolayer of Umbrella-Shaped Fullerene Derivatives. J. Am. Chem. Soc. 2011, 133, 16997–17004. [Google Scholar] [CrossRef]
- Minamiki, T.; Minami, T.; Koutnik, P.; Anzenbacher, P., Jr.; Tokito, S. Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor. Anal. Chem. 2016, 88, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hayashi, K.; Saito, N.; Sugimura, H.; Takai, O. Imaging micropatterned organosilane self-assembled monolayers on silicon by means of scanning electron microscopy and Kelvin probe force microscopy. Surf. Interface Anal. 2003, 35, 94–98. [Google Scholar] [CrossRef]
- Abitbol, T.; Palermo, A.; Moran-Mirabal, J.M.; Cranston, E.D. Fluorescent Labeling and Characterization of Cellulose Nanocrystals with Varying Charge Contents. Biomacromolecules 2013, 14, 3278–3284. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.-Y.; Park, S.-M. Electrochemical Impedance Spectroscopy. Annu. Rev. Anal. Chem. 2010, 3, 207–229. [Google Scholar] [CrossRef] [PubMed]
- Canepa, M.; Maidecchi, G.; Toccafondi, C.; Cavalleri, O.; Prato, M.; Chaudhari, V.; Esaulov, V.A. Spectroscopic ellipsometry of self assembled monolayers: Interface effects. The case of phenyl selenide SAMs on gold. Phys. Chem. Chem. Phys. 2013, 15, 11559–11565. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Kawai, A.; Hattori, T. Optical detection of anions using N-(4-(4-nitrophenylazo)phenyl)-N’-propyl thiourea bound silica film. New J. Chem. 2013, 37, 717–721. [Google Scholar] [CrossRef]
- Basabe-Desmonts, L.; Beld, J.; Zimmerman, R.S.; Hernando, J.; Mela, P.; Parajó, M.F.G.; van Hulst, N.F.; van den Berg, A.; Reinhoudt, D.N.; Crego-Calama, M. A Simple Approach to Sensor Discovery and Fabrication on Self-Assembled Monolayers on Glass. J. Am. Chem. Soc. 2004, 126, 7293–7299. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Gal, Y.-S.; Kim, S.-H.; Choi, H.-J.; Oh, M.-C.; Lee, J.; Koh, K. Potassium ion sensing using a self-assembled calix[4]crown monolayer by surface plasmon resonance. Sens. Actuators B 2008, 133, 577–581. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Yau, S.; Chau, L.-K.; Mohamed, A.; Huang, C.-J. Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications. Langmuir 2019, 35, 1652–1661. [Google Scholar] [CrossRef]
- Sun, F.; Hung, H.-C.; Sinclair, A.; Zhang, P.; Bai, T.; Galvan, D.D.; Jain, P.; Li, B.; Jiang, S.; Yu, Q. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat. Commun. 2016, 7, 13437. [Google Scholar] [CrossRef]
- Neal, J.F.; Zhao, W.; Grooms, A.J.; Smeltzer, M.A.; Shook, B.M.; Flood, A.H.; Allen, H.C. Interfacial Supramolecular Structures of Amphiphilic Receptors Drive Aqueous Phosphate Recognition. J. Am. Chem. Soc. 2019, 141, 7876–7886. [Google Scholar] [CrossRef] [PubMed]
- Toledo, K.C.F.; Bonacin, J.A. Preferential coordination of ruthenium complex as an electroactive self-assembled monolayer on gold substrate and its application in sensing of dopamine. Inorg. Chem. Commun. 2019, 99, 52–59. [Google Scholar] [CrossRef]
- Minamiki, T.; Kurita, R. Potentiometric detection of biogenic amines utilizing affinity on a 4-mercaptobenzoic acid monolayer. Anal. Methods 2019, 11, 1155–1158. [Google Scholar] [CrossRef]
- Wipf, M.; Stoop, R.L.; Tarasov, A.; Bedner, K.; Fu, W.; Wright, I.A.; Martin, C.J.; Constable, E.C.; Calame, M.; Schönenberger, C. Selective Sodium Sensing with Gold-Coated Silicon Nanowire Field-Effect Transistors in a Differential Setup. ACS Nano 2013, 7, 5978–5983. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.J.; Credo, G.M.; Su, X.; Wu, K.; Lim, H.C.; Elibol, O.H.; Bashir, R.; Varma, M. Surface immobilizable chelator for label-free electrical detection of pyrophosphate. Chem. Commun. 2011, 47, 8310–8312. [Google Scholar] [CrossRef] [PubMed]
- Credo, G.M.; Su, X.; Wu, K.; Elibol, O.H.; Liu, D.J.; Reddy, B., Jr.; Tsai, T.-W.; Dorvel, B.R.; Daniels, J.S.; Bashir, R.; et al. Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Analyst 2012, 137, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- Minami, T.; Minamiki, T.; Tokito, S. Electric Detection of Phosphate Anions in Water by an Extended-gate-type Organic Field-effect Transistor Functionalized with a Zinc(II)–Dipicolylamine Derivative. Chem. Lett. 2016, 45, 371–373. [Google Scholar] [CrossRef]
- Minami, T.; Minamiki, T.; Hashima, Y.; Yokoyama, D.; Sekine, T.; Fukuda, K.; Kumaki, D.; Tokito, S. An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water. Chem. Commun. 2014, 50, 15613–15615. [Google Scholar] [CrossRef]
- Erbahar, D.D.; Harbeck, M.; Gümüs, G.; Gürol, I.; Ahsen, V. Self-assembly of phthalocyanines on quartz crystal microbalances for QCM liquid sensing applications. Sens. Actuators B 2014, 190, 651–656. [Google Scholar] [CrossRef]
- Giancane, G.; Guascito, M.R.; Malitesta, C.; Mazzotta, E.; Picca, R.A.; Valli, L. QCM sensors for aqueous phenols based on active layers constituted by tetrapyrrolic macrocycle Langmuir films. J. Porphyr. Phthalocya. 2009, 13, 1129–1139. [Google Scholar] [CrossRef]
- Lieberzeit, P.; Greibl, W.; Jenik, M.; Dickert, F.L.; Fischerauer, G.; Bulst, W.-E. Cavities generated by self-organised monolayers as sensitive coatings for surface acoustic wave resonators. Anal. Bioanal. Chem. 2007, 387, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Fang, Y. Chemically assembled monolayers of fluorophores as chemical sensing materials. Chem. Soc. Rev. 2010, 39, 4258–4273. [Google Scholar] [CrossRef] [PubMed]
- Ros-Lis, J.V.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Rurack, K.; Weißhoff, H. Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. Eur. J. Org. Chem. 2007, 2007, 2449–2458. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Hinman, S.S.; McKeating, K.S.; Cheng, Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal. Chem. 2018, 90, 19–39. [Google Scholar] [CrossRef]
- Kurinomaru, T.; Kojima, N.; Kurita, R. An alkylating immobilization linker for immunochemical epigenetic assessment. Chem. Commun. 2017, 53, 8308–8311. [Google Scholar] [CrossRef] [Green Version]
- Kurinomaru, T.; Kojima, N.; Kurita, R. Immobilization of DNA on Biosensing Devices with Nitrogen Mustard–Modified Linkers. Curr. Protoc. Nucleic Acid Chem. 2019, 77, e85. [Google Scholar] [CrossRef]
- Kurinomaru, T.; Kojima, N.; Kurita, R. Sequential Assessment of Multiple Epigenetic Modifications of Cytosine in Whole Genomic DNA by Surface Plasmon Resonance. Anal. Chem. 2019, 91, 13933–13939. [Google Scholar] [CrossRef]
- Orendorff, C.J.; Gole, A.; Sau, T.K.; Murphy, C.J. Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence. Anal. Chem. 2005, 77, 3261–3266. [Google Scholar] [CrossRef]
- Goldman, L.; Schafer, A. Goldman-Cecil Medicine, 25th ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 2712–2722. [Google Scholar]
- Yoshioka, K.; Sato, Y.; Murakami, T.; Tanaka, M.; Niwa, O. One-Step Detection of Galectins on Hybrid Monolayer Surface with Protruding Lactoside. Anal. Chem. 2010, 82, 1175–1178. [Google Scholar] [CrossRef] [PubMed]
- Ataka, K.; Stripp, S.T.; Heberle, J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim. Biophys. Acta 2013, 1828, 2283–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Sengupta, A.; Raghavachari, K.; Flood, A.H. Anion Binding in Solution: Beyond the Electrostatic Regime. Chem 2017, 3, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Eckermann, A.L.; Feld, D.J.; Shaw, J.A.; Meade, T.J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 2010, 254, 1769–1802. [Google Scholar] [CrossRef] [Green Version]
- Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B. 2003, 88, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Syu, Y.-C.; Hsu, W.-E.; Lin, C.-T. Review—Field-Effect Transistor Biosensing: Devices and Clinical Applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3196–Q3207. [Google Scholar] [CrossRef]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kang, E.-S.; Baek, S.; Choo, S.-S.; Chung, Y.-H.; Lee, D.; Min, J.; Kim, T.-H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci. Rep. 2018, 8, 14049. [Google Scholar] [CrossRef] [Green Version]
- Kurita, R.; Hayashi, K.; Horiuchi, T.; Niwa, O.; Maeyama, K.; Tanizawa, K. Differential measurement with a microfluidic device for the highly selective continuous measurement of histamine released from rat basophilic leukemia cells (RBL-2H3). Lab Chip 2002, 2, 34–38. [Google Scholar] [CrossRef]
- Gallo, M.C.; Pires, B.M.; Toledo, K.C.F.; Jannuzzi, S.A.V.; Arruda, E.G.R.; Formiga, A.L.B.; Bonacin, J.A. The use of modified electrodes by hybrid systems gold nanoparticles/Mn-porphyrin in electrochemical detection of cysteine. Synth. Met. 2014, 198, 335–339. [Google Scholar] [CrossRef]
- Bao, L.; Sun, D.; Tachikawa, H.; Davidson, V.L. Improved Sensitivity of a Histamine Sensor Using an Engineered Methylamine Dehydrogenase. Anal. Chem. 2002, 74, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.S.L.; de Oliveira, M.F.; Stradiotto, N.R. Study of the Electrochemical Behavior of Histamine Using a Nafion®-Copper(II) Hexacyanoferrate Film-Modified Electrode. Int. J. Electrochem. Sci. 2010, 5, 1447–1456. [Google Scholar]
- Yee, S.K.; Sun, J.; Darancet, P.; Tilley, T.D.; Majumdar, A.; Neaton, J.B.; Segalman, R.A. Inverse Rectification in Donor–Acceptor Molecular Heterojunctions. ACS Nano 2011, 5, 9256–9263. [Google Scholar] [CrossRef] [PubMed]
- Painelli, A.; Terenziani, F. Optical Spectra of Push-Pull Chromophores in Solution: A Simple Model. J. Phys. Chem. A 2000, 104, 11041–11048. [Google Scholar] [CrossRef]
- Kubota, R.; Sasaki, Y.; Minamiki, T.; Minami, T. Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sens. 2019, 4, 2571–2587. [Google Scholar] [CrossRef]
- Sakata, T.; Fukuda, R. Simultaneous Biosensing with Quartz Crystal Microbalance with a Dissipation Coupled-Gate Semiconductor Device. Anal. Chem. 2013, 85, 5796–5800. [Google Scholar] [CrossRef]
- Kubota, R.; Hamachi, I. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chem. Soc. Rev. 2015, 44, 4454–4471. [Google Scholar] [CrossRef]
- Shin, I.-S.; Bae, S.W.; Kim, H.; Hong, J.-I. Electrogenerated Chemiluminescent Anion Sensing: Selective Recognition and Sensing of Pyrophosphate. Anal. Chem. 2010, 82, 8259–8265. [Google Scholar] [CrossRef]
- Minami, T.; Minamiki, T.; Tokito, S. An anion sensor based on an organic field effect transistor. Chem. Commun. 2015, 51, 9491–9494. [Google Scholar] [CrossRef]
- Nicholls, M.P.; Paul, P.K.C. Structures of carbohydrate–boronic acid complexes determined by NMR and molecular modelling in aqueous alkaline media. Org. Biomol. Chem. 2004, 2, 1434–1441. [Google Scholar] [CrossRef]
- Sivalingam, Y.; Pudi, R.; Lvova, L.; Pomarico, G.; Basoli, F.; Catini, A.; Legin, A.; Paolesse, R.; Natale, C.D. The light modulation of the interaction of l-cysteine with porphyrinscoated ZnO nanorods. Sens. Actuators B 2015, 209, 613–621. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Sota, H.; Yoshimine, H.; Whittier, R.F.; Gotoh, M.; Shinohara, Y.; Hasegawa, Y.; Okahata, Y. A Versatile Planar QCM-Based Sensor Design for Nonlabeling Biomolecule Detection. Anal. Chem. 2002, 74, 3592–3598. [Google Scholar] [CrossRef] [PubMed]
- Koide, H.; Fukuta, T.; Okishim, A.; Ariizumi, S.; Kiyokawa, C.; Tsuchida, H.; Nakamoto, M.; Yoshimatsu, K.; Ando, H.; Dewa, T.; et al. Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery. Biomacromolecules 2019, 20, 3648–3657. [Google Scholar] [CrossRef]
- Go, D.B.; Atashbar, M.Z.; Ramshani, Z.; Chang, H.-C. Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective. Anal. Methods 2017, 9, 4112–4134. [Google Scholar] [CrossRef]
- Fernández, M.J.; Fontecha, J.L.; Sayago, I.; Aleixandre, M.; Lozano, J.; Gutiérrez, J.; Gràcia, I.; Cané, C.; del Carmen Horrillo, M. Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors. Sens. Actuators B 2007, 127, 277–283. [Google Scholar] [CrossRef]
- Afzal, A.; Iqbal, N.; Mujahid, A.; Schirhagl, R. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Anal. Chim. Acta 2013, 787, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, C.; Jin, D.; Yu, Y.; Yang, F.; Zhang, Y.; Yao, Q.; Zhang, G.-J. AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes. ACS Sens. 2020. [Google Scholar] [CrossRef]
- Roy, D.; Kwon, S.H.; Kwak, J.-W.; Park, J.W. “Seeing and Counting” Individual Antigens Captured on a Microarrayed Spot with Force-Based Atomic Force Microscopy. Anal. Chem. 2010, 82, 5189–5194. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, B.; Wang, D.; Wen, Y.; Liu, G.; Dong, H.; Song, S.; Fan, C. DNA Nanostructure-Based Universal Microarray Platform for High- Efficiency Multiplex Bioanalysis in Biofluids. ACS Appl. Mater. Interfaces 2014, 6, 17944–17953. [Google Scholar] [CrossRef]
- Minamiki, T.; Ichikawa, Y.; Kurita, R. Systematic Investigation of Molecular Recognition Ability in FET-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS Appl. Mater. Interfaces 2020, 12, 15903–15910. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.J.; Cui, J.; Björnmalm, M.; Braunger, J.A.; Ejima, H.; Caruso, F. Innovation in Layer-by-Layer Assembly. Chem. Rev. 2016, 116, 14828–14867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavoille, T.; Pannacci, N.; Bergeot, G.; Marliere, C.; Marre, S. Microfluidic approaches for accessing thermophysical properties of fluid systems. React. Chem. Eng. 2019, 4, 1721–1739. [Google Scholar] [CrossRef]
- Erbas-Cakmak, S.; Leigh, D.A.; McTernan, C.T.; Nussbaumer, A.L. Artificial Molecular Machines. Chem. Rev. 2015, 115, 10081–10206. [Google Scholar] [CrossRef] [Green Version]
- Minamiki, T.; Sasaki, Y.; Tokito, S.; Minami, T. Label-Free Direct Electrical Detection of a Histidine-Rich Protein with Sub-Femtomolar Sensitivity using an Organic Field-Effect Transistor. ChemistryOpen 2017, 6, 472–475. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, K.; Minamiki, T.; Minami, T.; Watanabe, M.; Fukuda, T.; Kumaki, D.; Tokito, S. Printed Organic Transistors with Uniform Electrical Performance and Their Application to Amplifiers in Biosensors. Adv. Electron. Mater. 2015, 1, 1400052. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef]
- Liu, Y.; Minami, T.; Nishiyabu, R.; Wang, Z.; Anzenbacher, P., Jr. Sensing of Carboxylate Drugs in Urine by a Supramolecular Sensor Array. J. Am. Chem. Soc. 2013, 135, 7705–7712. [Google Scholar] [CrossRef] [Green Version]
- Palacios, M.A.; Nishiyabu, R.; Marquez, M.; Anzenbacher, P., Jr. Supramolecular Chemistry Approach to the Design of a High-Resolution Sensor Array for Multianion Detection in Water. J. Am. Chem. Soc. 2007, 129, 7538–7544. [Google Scholar] [CrossRef] [Green Version]
Synthetic Receptor | Type of Assembly | Transduction Mechanism | Analyte | LOD | Ref. |
---|---|---|---|---|---|
Thiourea | SAM | Colorimetry | Anions (CH3CO2−, H2PO4−, Cl−) | <0.1 mM | [40] |
Thiourea (for anions), carboxylate (for cations) | SAM | Fluorometry | Inorganic anions (HSO4−, NO3−, H2PO4−, AcO−) or metal cations (CoII, CuII, CaII, PbII) | <1 µM | [41] |
Calix[4]crown | SAM | SPR | Potassium (K+) | 1 pM | [42] |
Zwitterions [carboxybetaine (CB), sulfobetaine (SB)] | SAM | SPR | Proteins (Albumin, IgG) | 55.8 ng/mL | [43] |
Carboxylate, propane | SAM | SERS | Drugs (CARB, PHEN, and AH) | 0.5 µM (for CARB), 1 µM (for PHEN), 0.05 µM (for AH) | [44] |
Guanidinium | LB film | IRAS | Phosphate | 1 µM | [45] |
Pyridine | SAM | CV | Dopamine | 3.3 µM | [46] |
Benzoic acid | SAM | Potentiometry (ISE) | Histamine | 25 µM | [47] |
15-Crown-5-ether | SAM | Potentiometry (FET) | Sodium (Na+) | NA | [48] |
Zinc-dipicolylamine (ZnII-dpa) | SAM | Potentiometry (FET) | Pyrophosphate (PPi) | 25 µM | [49,50] |
Zinc-dipicolylamine (ZnII-dpa) | SAM | Potentiometry (FET) | Phosphates | NA | [51] |
Phenylboronic acid (PBA) | SAM | Potentiometry (FET) | Saccharides | 5 mM | [52] |
Nickel-phthalocyanine (NiII-pc) | SAM | QCM | p-Xylene | NA | [53] |
Nickel-phthalocyanine (NiII-pc) | LB film | QCM | Aqueous phenols | <1 mM | [54] |
Trimethylchlorosilane | SAM | SAW | VOCs | <10 ppm | [55] |
Transduction Mechanism | Example of Suitable Analytes | Miniaturization and Integration of Sensing System |
---|---|---|
Colorimetry | Ions, small molecules, peptides | Slightly difficult |
Fluorometry | Ions, small molecules, peptides, proteins | Easy |
SPR | Peptides, proteins | Very easy |
SERS | Ions, small molecules | Difficult |
IRAS | Ions, small molecules | Difficult |
CV | Ions, small molecules | Easy |
Potentiometry (ISE) | Ions, small molecules | Very easy |
Potentiometry (FET) | Ions, small molecules, peptides | Very easy |
QCM | Peptides, proteins | Difficult |
SAW | Small molecules, peptides, proteins | Very easy |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minamiki, T.; Ichikawa, Y.; Kurita, R. The Power of Assemblies at Interfaces: Nanosensor Platforms Based on Synthetic Receptor Membranes. Sensors 2020, 20, 2228. https://doi.org/10.3390/s20082228
Minamiki T, Ichikawa Y, Kurita R. The Power of Assemblies at Interfaces: Nanosensor Platforms Based on Synthetic Receptor Membranes. Sensors. 2020; 20(8):2228. https://doi.org/10.3390/s20082228
Chicago/Turabian StyleMinamiki, Tsukuru, Yuki Ichikawa, and Ryoji Kurita. 2020. "The Power of Assemblies at Interfaces: Nanosensor Platforms Based on Synthetic Receptor Membranes" Sensors 20, no. 8: 2228. https://doi.org/10.3390/s20082228
APA StyleMinamiki, T., Ichikawa, Y., & Kurita, R. (2020). The Power of Assemblies at Interfaces: Nanosensor Platforms Based on Synthetic Receptor Membranes. Sensors, 20(8), 2228. https://doi.org/10.3390/s20082228