Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell-to-Liquid Separation with Ultrasonic Transducer
2.2. Design and Analysis of the Ultrasonic Transducer
2.3. RBC Separation and Sedimentation Using an Ultrasonic Transducer
3. Results and Discussion
3.1. Numerical Simulation for Estimating Acoustic Pressure Fields Inside Ultrasonic Transducer
3.2. Experimental Visualization of RBCs Suspended in Ultrasonic Transducer
3.3. Contributions of Acoustic Power to RBC-to-Liquid Separation
3.4. Contributions of Hematocrit and Dextran Solution to RBC-to-Liquid Separation
3.5. Hardened Blood Sample Preparation with Ultrasonic Transducer
3.6. Measurement of RBC Aggregation and Blood Viscosity for Hardened Blood Sample
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Blood Sample Preparation
Appendix A.2. Fabrication and Procedures for Microfluidic-Based Experiments
Appendix A.3. Quantification of RBC Aggregation and Blood Viscosity in Microfluidic Channels
References
- Yeom, E.; Kim, H.M.; Park, J.H.; Choi, W.; Doh, J.; Lee, S.J. Microfluidic system for monitoring temporal variations of hemorheological properties and platelet adhesion in LPS-injected rats. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yeom, E.; Kang, Y.J.; Lee, S.J. Hybrid system for ex-vivo hemorheological and hemodynamic analysis: a feasibility study. Sci Rep 2015, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.J.; Yeom, E.; Lee, S.-J. Microfluidic biosensor for monitoring temporal variations of hemorheological and hemodynamic properties using an extracorporeal rat bypass loop. Anal. Chem. 2013, 85, 10503–10511. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, Y.; Wang, X.; Shehata, N.; Wang, C.; Sun, Y. Stiffness increase of red blood cells during storage. Microsyst. Nanoeng. 2018, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Kim, B.; Lee, J.K.; Choi, S. 3D-printed capillary circuits for rapid, low-cost, portable analysis of blood viscosity. Sens. Actuator B-Chem. 2018, 259, 106–113. [Google Scholar] [CrossRef]
- Ahn, C.B.; Kang, Y.J.; Kim, M.G.; Yang, S.; Lim, C.H.; Son, H.S.; Kim, J.S.; Lee, S.Y.; Son, K.H.; Sun, K. The effect of pulsatile versus nonpulsatile blood flow on viscoelasticity and red blood cell aggregation in extracorporeal circulation. Korean J. Thorac. Cardiovasc. Surg. 2016, 49, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Dutra, B. Macro-scale acoustophoretic separation of lipid particles from red blood cells. J. Acoust. Soc. Am. 2013, 133, 3279. [Google Scholar] [CrossRef]
- Kang, Y.J. Microfluidic-based biosensor for sequential measurement of blood pressure and RBC aggregation over continuously varying blood flows. Micromachines 2019, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.J. Simultaneous measurement of blood pressure and RBC aggregation by monitoring on–off blood flows supplied from a disposable air-compressed pump. Analyst 2019, 144, 3556–3566. [Google Scholar] [CrossRef]
- Kang, Y.J. RBC deformability measurement based on variations of pressure in multiple micropillar channels during blood delivery using a disposable air-compressed pump. Anal. Methods 2018, 10, 4549–4561. [Google Scholar] [CrossRef]
- Cousins, C.M.; Holownia, P.; Hawkes, J.J.; Price, C.P.; Keay, P.; Coakley, W.T. Clarification of plasma from whole human blood using ultrasound. Ultrasonics 2000, 38, 654–656. [Google Scholar] [CrossRef]
- Petersson, F.; Nilsson, A.; Holm, C.; Jonsson, H.; Laurell, T. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 2005, 5, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, H.; Nilsson, A.; Petersson, F.; Allers, M.; Laurell, T. Particle separation using ultrasound can be used with human shed mediastinal blood. Perfusion 2005, 20, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Cushing, K.W.; Piyasena, M.E.; Carroll, N.J.; Maestas, G.C.; López, B.A.; Edwards, B.S.; Graves, S.W.; López, G.P. Elastomeric negative acoustic contrast particles for affinity capture assays. Anal. Chem. 2013, 85, 2208–2215. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, M.; Ren, L.; Liu, J.; Whitley, P.H.; Wang, L.; Huang, T.J. High-throughput acoustic separation of platelets from whole blood. Lab Chip 2016, 16, 3466–3472. [Google Scholar] [CrossRef] [Green Version]
- Wua, M.; Ouyang, Y.; Wang, Z.; Zhang, R.; Huang, P.-H.; Chen, C.; Li, H.; Li, P.; Quinn, D.; Dao, M.; et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics Proc. the Natl. Acad. Sci. 2017, 114, 10584–10589.
- Benes, E.; Gröschl, M.; Nowotny, H.; Trampler, F.; Keijzer, T.; Böhm, H.; Radel, S.; Gherardini, L.; Hawkes, J.J.; König, R.; et al. Ultrasonic separation of suspended particles. In Proceedings of the 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium, Atlanta, GA, USA, 7–10 October 2001. [Google Scholar]
- Trujillo, F.J.; Eberhardt, S.; Möller, D.; Dual, J.; Knoerzer, K. Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves. Ultrason. Sonochem. 2013, 20, 655–666. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Nowotny, H.; Benes, E. General one-dimensional treatment of the layered piezoelectric resonator with two electrodes. J. Acoust. Soc. Am. 1987, 82, 513–521. [Google Scholar] [CrossRef]
- Groschl, M. Ultrasonic Separation of Suspended Particles - Part I: Fundamentals. Austica 1998, 84, 432–447. [Google Scholar]
- Chen, Y.; Xie, G.; Chang, J.; Grundy, J.; Liub, Q. A study of coal aggregation by standing-wave ultrasound. Fuel 2019, 248, 38–46. [Google Scholar] [CrossRef]
- Kang, Y.J. Microfluidic-based measurement method of red blood cell aggregation under hematocrit variations. Sensors 2017, 17, 2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.J. Microfluidic-based effective monitoring of bloods by measuring RBC aggregation and blood viscosity under stepwise varying shear rates. Rheol. J. 2020, 32, 1–13. [Google Scholar] [CrossRef]
- Kang, Y.J. Microfluidic-based technique for measuring RBC aggregation and blood viscosity in a continuous and simultaneous fashion. Micromachines 2018, 9, 467. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.J. Periodic and simultaneous quantification of blood viscosity and red blood cell aggregation using a microfluidic platform under in-vitro closed-loop circulation. Biomicrofluidics 2018, 12, 024116. [Google Scholar] [CrossRef]
- Kang, Y.J.; Ryu, J.; Lee, S.-J. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel. Biomicrofluidics 2013, 7, 044106. [Google Scholar] [CrossRef] [Green Version]
Layer | Piezoelectric | Carrier | Blood Container | Reflector | |
---|---|---|---|---|---|
ℓ (mm) | 0.5 | 5.14 | 12.3 | 5.14 | |
Material | PIC181 | Pyrex | Plasma | RBCs | Pyrex |
ρ (kg/m3) | 7850 | 2200 | 1025 | 1093 | 2200 |
v (m/s) | 4460 | 5400 | 1570 | 1645 | 5400 |
Remark | As acoustic contrast factor took positive value (ϕ = 0.21), RBCs tended to focus and aggregate at the nodes of pressure fields. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Jeong, S.; Kang, Y.J. Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample. Sensors 2020, 20, 2284. https://doi.org/10.3390/s20082284
Kim G, Jeong S, Kang YJ. Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample. Sensors. 2020; 20(8):2284. https://doi.org/10.3390/s20082284
Chicago/Turabian StyleKim, Gwangho, Sanghwa Jeong, and Yang Jun Kang. 2020. "Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample" Sensors 20, no. 8: 2284. https://doi.org/10.3390/s20082284
APA StyleKim, G., Jeong, S., & Kang, Y. J. (2020). Ultrasound Standing Wave-Based Cell-to-liquid Separation for Measuring Viscosity and Aggregation of Blood Sample. Sensors, 20(8), 2284. https://doi.org/10.3390/s20082284