Modeling and Forecasting the GPS Zenith Troposphere Delay in West Antarctica Based on Different Blind Source Separation Methods and Deep Learning
Abstract
:1. Introduction
2. Methods and Data
2.1. PCA
2.2. ICA
- (1)
- M ≥ N;
- (2)
- all source signals must be non-Gaussian; and
- (3)
- each source Si is mutually and statistically independent.
2.3. BP Neural Network
2.4. LSTM Network
2.5. Data
3. Process of ZTD Modeling
3.1. Data Preprocessing
3.2. ZTD Modeling
3.2.1. Building the Annual Mean Model
3.2.2. Choosing the Appropriate Number of ICs
3.2.3. Building the Spatial Response Model
3.2.4. Obtaining the ZTD Models
4. Results and Discussion
4.1. Validation Using Modeling Station Data
4.2. Validation Using Nonmodeling Station Data
4.3. Validation of ZTD Forecasting
- (1)
- Event A. Rise ZTD: ZTD(t + 6 h) − ZTD(t) >= 0.
- (2)
- Event non-A. Drop ZTD: ZTD(t + 6 h) − ZTD(t) < 0.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, J.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Alshawaf, F.; Zus, F.; Balidakis, K.; Deng, Z.; Hoseini, M.; Dick, G.; Wickert, J. On the statistical significance of climatic trends estimated from GPS tropospheric time series. J. Geophys. Res. Atmos. 2018, 123, 10967–10990. [Google Scholar] [CrossRef]
- Wilson, T.; Wiens, D.; Smalley, B.; Raymond, C.; Nyblade, A.; Huerta, A.; Dalziel, I.; Bevis, M.; Aster, R.; Anandakrishnan, S. Polenet seismic and gps network in west Antarctica. In Proceedings of the AGU Fall Meeting, San Francisco, USA, 15–19 December 2008; p. 89. [Google Scholar]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophys. Monogr. Ser. 1972, 15, 247–251. [Google Scholar] [CrossRef]
- Hopfield, H.S. Two-quartic tropospheric refractivity profile for correction satellite data. J. Geophys. Res. 1969, 74, 4487–4499. [Google Scholar] [CrossRef]
- Collins, P.; Langley, R.; Lamance, J. Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation. In Proceedings of the Institute of Navigation 52nd Annual Meeting, Cambridge, MA, USA, 19–21 June 1996; pp. 519–528. [Google Scholar]
- Leandro, R.F.; Langley, R.B.; Santos, M.C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. GPS Solut. 2008, 12, 65–70. [Google Scholar] [CrossRef]
- Leandro, R.F.; Santos, M.C.; Langley, R.B. UNB neutral atmosphere model: Development and performance. In Proceedings of the Institute of Navigation NTM 2006, Monterey, CA, USA, 18–20 January 2006; pp. 564–573. [Google Scholar]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [Green Version]
- Boehm, J.; Moller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, C.; Shi, J.; Cao, N.; Zhang, B.; Yang, J. ITG: A new global GNSS tropospheric correction model. Sci. Rep. 2015, 5, 10273. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, B.; Yao, Y. An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions. Earth Space Sci. 2019, 6, 1926–1941. [Google Scholar] [CrossRef]
- Yao, Y.; He, C.; Zhang, B.; Xu, C. A new global zenith tropospheric delay model GZTD. Acta Geophys. Sin. 2013, 56, 2218–2227. (In Chinese) [Google Scholar]
- Yao, Y.; Hu, Y.; Yu, C.; Zhang, B.; Guo, J. An improved global zenith tropospheric delay model GZTD2 considering diurnal variations. Nonlinear Processes Geophys. 2016, 23, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wu, Z.; Yin, Z.; Ma, B. A simplified GNSS tropospheric delay model based on the nonlinear hypothesis. GPS Solut. 2017, 21, 1735–1745. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Song, S.L.; Chen, Q.M.; Zhou, W.L.; Zhu, W.Y. Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile. Acta Geophys. Sin. 2014, 57, 3140–3153. (In Chinese) [Google Scholar]
- Li, W.; Yuan, Y.; Ou, J.; Chai, Y.; Li, Z.; Liou, Y.A.; Wang, N. New versions of the bds/gnss zenith tropospheric delay model iggtrop. J. Geod. 2015, 89, 73–80. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.; Ou, J.; He, Y. Iggtrop_sh and iggtrop_rh: Two improved empirical tropospheric delay models based on vertical reduction functions. IEEE Trans. Geosci. Remote 2018, 56, 5276–5288. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y. A new global zenith tropospheric delay model iggtrop for gnss applications. Chin. Sci. Bull. 2012, 57, 2132–2139. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Chen, P.; Wei, E.; Li, Q. Global model of zenith tropospheric delay proposed based on EOF analysis. Adv. Space Res. 2017, 60, 187–198. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Suparta, W.; Alhasa, K.M. Modeling of zenith path delay over Antarctica using an adaptive neuro fuzzy inference system technique. Expert Syst. Appl. 2015, 42, 1050–1064. [Google Scholar] [CrossRef]
- Xiao, G.W.; Ou, J.K.; Liu, G.L.; Zhang, H.X. Construction of a regional precise tropospheric delay model based on improved BP neural network. Acta Geophys. Sin. 2018, 61, 3139–3148. (In Chinese) [Google Scholar]
- Gualandi, A.; Serpelloni, E.; Belardinelli, M.E. Blind source separation problem in GPS time series. J. Geod. 2016, 90, 323–341. [Google Scholar] [CrossRef]
- Dong, D.; Fang, P.; Bock, Y.; Webb, F.; Prawirodirdjo, L.; Kedar, S.; Jamason, P. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Ming, F.; Yang, Y.; Zeng, A.; Zhao, B. Spatiotemporal filtering for regional GPS network in China using independent component analysis. J. Geod. 2017, 91, 419–440. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Zhang, S.; Lei, J.; Zhang, Q.; Yuan, L. Spatiotemporal Filtering and Noise Analysis for Regional GNSS Network in Antarctica Using Independent Component Analysis. Remote Sens. 2019, 11, 386. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Yan, H.; Chen, B.; Liu, B. Regional spatio-temporal zenith tropospheric delay modelling using independent component analysis. Surv. Rev. 2018, 51, 544–552. [Google Scholar] [CrossRef]
- Sundermeyer, M.; Schlüter, R.; Ney, H. LSTM neural networks for language modeling. In Proceedings of the 13th Annual Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Dong, D.; Bürgmann, R.; Materna, K.; Tan, W.; Peng, Y.; Chen, J. Separation of Sources of Seasonal Uplift in China Using Independent Component Analysis of GNSS Time Series. J. Geophys. Res. Solid Earth 2019. [Google Scholar] [CrossRef]
- Ding, S.; Su, C.; Yu, J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36, 153–162. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99, 1–2. [Google Scholar] [CrossRef]
- Schneider, T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 2001, 14, 853–871. [Google Scholar] [CrossRef]
- Milliner, C.; Materna, K.; Bürgmann, R.; Fu, Y.; Moore, A.W.; Bekaert, D.; Adhikari, S.; Argus, D.F. Tracking the weight of Hurricane Harvey’s stormwater using GPS data. Sci. Adv. 2018, 4, eaau2477. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, R.D.; Valero-Mora, P. Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis. Pract. Assess. Res. Eval. 2007, 12, 2. [Google Scholar]
- Rohm, W.; Yuan, Y.; Biadeglgne, B.; Zhang, K.; Le Marshall, J. Ground-based GNSS ZTD/IWV estimation system for numerical weather prediction in challenging weather conditions. Atmos. Res. 2014, 138, 414–426. [Google Scholar] [CrossRef]
- Vedel, H. Targeting Optimal Use of GPS Humidity Measurement for Meteorology, Final Report. Available online: http://tough.dmi.dk/deliverables/d14-final-rep.pdf (accessed on 6 July 2016).
- Hyvarinen, O. A Probabilistic Derivation of Heidke Skill Score. Weather Forecast. 2014, 29, 177–181. [Google Scholar] [CrossRef]
Model | West Antarctica | West Antarctica (h < 500 m) | West Antarctica (h ≥ 500 m) | Antarctic Peninsula | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | |
PCA | 95.9 | −1.5 | 7.6 | 95.9 | −1.7 | 8.8 | 95.9 | −1.4 | 6.9 | 95.4 | −1.8 | 10.4 |
ICA | 96.2 | −1.5 | 7.1 | 96.5 | −1.7 | 7.7 | 96.1 | −1.4 | 6.8 | 96.6 | −1.8 | 8.3 |
Model | West Antarctica | West Antarctica (h < 500 m) | West Antarctica (h ≥ 500 m) | Antarctic Peninsula | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | |
PCA | 93.9 | 0.1 | 9.3 | 92.1 | 0.7 | 12.0 | 94.8 | −0.2 | 8.0 | 92.0 | −0.7 | 11.2 |
ICA | 94.1 | 0.0 | 8.9 | 93.5 | 0.5 | 10.5 | 94.5 | −0.2 | 8.1 | 91.7 | −0.8 | 10.9 |
Timespan | West Antarctica | West Antarctica (h < 500 m) | West Antarctica (h ≥ 500 m) | Antarctic Peninsula | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | R/% | Bias/mm | RMS/mm | |
6 h | 90.6 | −2.0 | 7.2 | 89.0 | −0.5 | 7.7 | 91.3 | −2.7 | 6.9 | 84.7 | −2.0 | 7.6 |
12 h | 83.0 | −2.2 | 9.1 | 79.3 | −0.3 | 10.0 | 84.9 | −3.1 | 8.6 | 71.2 | −1.2 | 10.0 |
24 h | 63.2 | −5.1 | 13.3 | 59.6 | −2.4 | 13.5 | 65.1 | −6.5 | 13.3 | 51.5 | −0.9 | 12.1 |
Event Forecast | Event Observed | |
---|---|---|
A | Non-A | |
A | a | b |
Non-A | c | d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, F.; Zhang, S.; Li, W. Modeling and Forecasting the GPS Zenith Troposphere Delay in West Antarctica Based on Different Blind Source Separation Methods and Deep Learning. Sensors 2020, 20, 2343. https://doi.org/10.3390/s20082343
Zhang Q, Li F, Zhang S, Li W. Modeling and Forecasting the GPS Zenith Troposphere Delay in West Antarctica Based on Different Blind Source Separation Methods and Deep Learning. Sensors. 2020; 20(8):2343. https://doi.org/10.3390/s20082343
Chicago/Turabian StyleZhang, Qingchuan, Fei Li, Shengkai Zhang, and Wenhao Li. 2020. "Modeling and Forecasting the GPS Zenith Troposphere Delay in West Antarctica Based on Different Blind Source Separation Methods and Deep Learning" Sensors 20, no. 8: 2343. https://doi.org/10.3390/s20082343
APA StyleZhang, Q., Li, F., Zhang, S., & Li, W. (2020). Modeling and Forecasting the GPS Zenith Troposphere Delay in West Antarctica Based on Different Blind Source Separation Methods and Deep Learning. Sensors, 20(8), 2343. https://doi.org/10.3390/s20082343