Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters
Abstract
:1. Introduction
- Improved heartbeat detection algorithms;
- Feasibility assessments related to bed-BCG-based blood pressure tracking;
- A better understanding of the influence of sensor location and type on BCG morphology;
- Enhanced motion detection/mitigation algorithms.
2. Materials and Methods
2.1. Bed-Based Ballistocardiography
2.2. ECG, PPG, and Continuous Blood Pressure Waveforms
2.3. Data Collection and Shared Database Structure
2.4. Signal Preprocessing
2.5. Initial Analysis—Ballistocardiogram and Blood Pressure Parameter Extraction
2.6. Relating ECG, PPG, and BCG Extracted Features to Cardiovascular Parameters
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suliman, A.; Carlson, C.; Ade, C.J.; Warren, S.; Thompson, D.E. Performance Comparison for Ballistocardiogram Peak Detection Methods. IEEE Access 2019, 7, 53945–53955. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, K.S. HRV analysis and blood pressure monitoring on weighing scale using BCG. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3789–3792. [Google Scholar] [CrossRef]
- Alivar, A.; Carlson, C.; Suliman, A.; Warren, S.; Prakash, P.; Thompson, D.E.; Natarajan, B. Motion Detection in Bed-Based Ballistocardiogram to Quantify Sleep Quality. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Jung, D.W.; Hwang, S.H.; Yoon, H.N.; Lee, Y.-J.G.; Jeong, D.-U.; Park, K.S. Nocturnal Awakening and Sleep Efficiency Estimation Using Unobtrusively Measured Ballistocardiogram. IEEE Trans. Biomed. Eng. 2014, 61, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, M.; Inan, O.T.; Giovangrandi, L.; Kovacs, G.T.A. Rapid Assessment of Cardiac Contractility on a Home Bathroom Scale. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S.; Carek, A.M.; Inan, O.T.; Mukkamala, R.; Hahn, J.-O. Ballistocardiogram-Based Approach to Cuffless Blood Pressure Monitoring: Proof of Concept and Potential Challenges. IEEE Trans. Biomed. Eng. 2018, 65, 2384–2391. [Google Scholar] [CrossRef]
- Su, B.Y.; Enayati, M.; Ho, K.C.; Skubic, M.; Despins, L.; Keller, J.; Popescu, M.; Guidoboni, G.; Rantz, M. Monitoring the Relative Blood Pressure Using a Hydraulic Bed Sensor System. IEEE Trans. Biomed. Eng. 2019, 66, 740–748. [Google Scholar] [CrossRef]
- Starr, I.; Noordergraaf, A. Ballistocardiography in Cardiovascular Research: Physical Aspects of the Circulation in Health and Disease; Lippincott: Philadelphia, PA, USA, 1967. [Google Scholar]
- Inan, O.T.; Migeotte, P.-F.; Park, K.-S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [Google Scholar] [CrossRef] [Green Version]
- Scarborough, W.R.; Talbot, S.A. Proposals for Ballistocardiographic Nomenclature and Conventions: Revised and Extended: Report of Committee on Ballistocardiographic Terminology. Circulation 1956, 14, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Wiens, A.D.; Johnson, A.; Inan, O.T. Wearable Sensing of Cardiac Timing Intervals from Cardiogenic Limb Vibration Signals. IEEE Sens. J. 2017, 17, 1463–1470. [Google Scholar] [CrossRef] [Green Version]
- He, D.D.; Winokur, E.S.; Sodini, C.G. An Ear-Worn Vital Signs Monitor. IEEE Trans. Biomed. Eng. 2015, 62, 2547–2552. [Google Scholar] [CrossRef]
- Yao, Y.; Ghasemi, Z.; Shandhi, M.M.H.; Ashouri, H.; Xu, L.; Mukkamala, R.; Inan, O.T.; Hahn, J.-O. Mitigation of Instrument-Dependent Variability in Ballistocardiogram Morphology: Case Study on Force Plate and Customized Weighing Scale. IEEE J. Biomed. Health Inform. 2019, 24, 69–78. [Google Scholar] [CrossRef]
- Gomez-Clapers, J.; Casanella, R.; Pallas-Areny, R. Direct Pulse Transit Time measurement from an electronic weighing scale. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 773–776. [Google Scholar]
- Inan, O.T.; Etemadi, M.; Widrow, B.; Kovacs, G.T.A. Adaptive Cancellation of Floor Vibrations in Standing Ballistocardiogram Measurements Using a Seismic Sensor as a Noise Reference. IEEE Trans. Biomed. Eng. 2010, 57, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Alivar, A.; Carlson, C.; Suliman, A.; Warren, S.; Prakash, P.; Thompson, D.E.; Natarajan, B. Motion Artifact Detection and Reduction in Bed-Based Ballistocardiogram. IEEE Access 2019, 7, 13693–13703. [Google Scholar] [CrossRef]
- Bruser, C.; Kortelainen, J.M.; Winter, S.; Tenhunen, M.; Parkka, J.; Leonhardt, S. Improvement of force-sensor-based heart rate estimation using multichannel data fusion. IEEE J. Biomed. Health Inform. 2015, 19, 227–235. [Google Scholar] [CrossRef]
- Jansen, B.H.; Larson, B.H.; Shankar, K. Monitoring of the ballistocardiogram with the static charge sensitive bed. IEEE Trans. Biomed. Eng. 1991, 38, 748–751. [Google Scholar] [CrossRef]
- Shao, D.; Tsow, F.; Liu, C.; Yang, Y.; Tao, N. Simultaneous Monitoring of Ballistocardiogram and Photoplethysmogram Using a Camera. IEEE Trans. Biomed. Eng. 2017, 64, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Guohua, L.; Jianqi, W.; Yu, Y.; Xijing, J. Study of the Ballistocardiogram signal in life detection system based on radar. In Proceedings of the 2007 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 2191–2194. [Google Scholar] [CrossRef]
- Will, C.; Shi, K.; Lurz, F.; Weigel, R.; Koelpin, A. Instantaneous heartbeat detection using a cross-correlation based template matching for continuous wave radar systems. In Proceedings of the 2016 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Austin, TX, USA, 24–27 January 2016; pp. 31–34. [Google Scholar] [CrossRef]
- Rajala, S.; Ahmaniemi, T.; Lindholm, H.; Müller, K.; Taipalus, T. A chair based ballistocardiogram time interval measurement with cardiovascular provocations. In Proceedings of the 2018 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; pp. 5685–5688. [Google Scholar] [CrossRef]
- Junnila, S.; Akhbardeh, A.; Varri, A.; Koivistoinen, T. An EMFi-film sensor based ballistocardiographic chair: Performance and cycle extraction method. In Proceedings of the IEEE Workshop on Signal Processing Systems Design and Implementation, Athens, Greece, 2–4 November 2005; pp. 373–377. [Google Scholar] [CrossRef]
- Carlson, C.; Suliman, A.; Prakash, P.; Thompson, D.E.; Wang, S.; Natarajan, B.; Warren, S. Bed-based instrumentation for unobtrusive sleep quality assessment in severely disabled autistic children. In Proceedings of the 2016 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 4909–4912. [Google Scholar] [CrossRef]
- Mukkamala, R.; Hahn, J.-O.; Inan, O.T.; Mestha, L.K.; Kim, C.-S.; Töreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-H.; Harfiya, L.N.; Purwandari, K.; Lin, Y.-D. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model. Sensors 2020, 20, 5606. [Google Scholar] [CrossRef]
- Yao, Y.; Shin, S.; Mousavi, A.; Kim, C.-S.; Xu, L.; Mukkamala, R.; Hahn, J.-O. Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography. Sensors 2019, 19, 2922. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.J.; Roh, J.; Cho, D.; Hyeong, J.; Kim, S. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram. Sensors 2019, 19, 595. [Google Scholar] [CrossRef] [Green Version]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef]
- Alivar, A.; Carlson, C.; Suliman, A.; Warren, S.; Prakash, P.; Thompson, D.E.; Natarajan, B. A Pilot Study on Predicting Daytime Behavior & Sleep Quality in Children With ASD. In Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, PA, USA, 7 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Datex-Ohmeda CardiocapTM/5 for Anesthesia: User’s Reference Manual; Datex-Ohmeda Inc.: Madison, WI, USA, 2004; pp. 1-16–1-17.
- Carlson, C.; Turpin, V.-R.; Suliman, A.; Ade, C.; Warren, S.; Thompson, D.E. Bed-Based Ballistocardiography Dataset. IEEE DataPort 2020, in press. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.F.; Volfson, L.B.; Kirzon-Zolin, V.V.; Schukin, V.G. Application of pattern recognition and image classification techniques to determine continuous cardiac output from the arterial pressure waveform. IEEE Trans. Biomed. Eng. 1994, 41, 913–920. [Google Scholar] [CrossRef]
- Kim, C.-S.; Carek, A.M.; Mukkamala, R.; Inan, O.T.; Hahn, J.-O. Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring. IEEE Trans. Biomed. Eng. 2015, 62, 2657–2664. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Mean +/− Stdev |
---|---|
Age (years) | 34 +/− 15 |
Weight (kg) | 76 +/− 18 |
Height (cm) | 171 +/− 11 |
BMI (kg/m2) | 26 +/− 5.7 |
Parameter | Description |
---|---|
PAT | Time delay between the PPG maximum first derivative and ECG R peak |
IJ time | Time delay between the BCG J and I peaks |
JK time | Time delay between the BCG K and J peaks |
IJ amp | Amplitude difference between the BCG I and J peaks |
JK amp | Amplitude difference between the BCG J and K peaks |
SP | Systolic blood pressure |
DP | Diastolic blood pressure |
PP | Pulse pressure (systolic pressure–diastolic pressure) |
SV | Stroke volume |
dP/dtmax | Maximal steepness on the upstroke of the finger pressure waveform |
Predictor(s) | Response |
---|---|
Pulse Pressure | SV |
PAT * | SP |
IJ time * | DP |
JK amp | PP |
IJ time *, IJ amp, JK time *, JK amp | DP |
IJ time *, IJ amp, JK time *, JK amp | SP |
IJ time *, IJ amp, JK time *, JK amp | dP/dtmax |
IJ time *, IJ amp, JK time *, JK amp | SV |
Cardiovascular Response | Avg. Range (Max−Min) (Mean +/− Stdev) |
---|---|
Systolic Pressure (mmHg) | 21 +/− 8.6 |
Diastolic Pressure (mmHg) | 13 +/− 5.0 |
Stroke Volume (ml) | 23 +/− 9.9 |
dP/dtmax (mHg/s) | 0.31 +/− 0.15 |
Predictor | Cardiovascular Response | Correlation Coefficient (Mean +/− Stdev) |
---|---|---|
PP (Pulse Pressure) | Stroke Volume | 0.72 +/− 0.24 |
PAT * | Systolic Pressure | 0.48 +/− 0.25 |
Sensor | IJ time–DP | JK amp–PP | MP–DP | MP–SP | MP–dP/dtmax | MP–SV |
---|---|---|---|---|---|---|
Film 0 | 0.25 +/− 0.20 | 0.26 +/− 0.17 | 0.44 +/− 0.2 | 0.54 +/− 0.15 | 0.51 +/− 0.18 | 0.53 +/− 0.17 |
Film 1 | 0.25 +/− 0.19 | 0.22 +/− 0.17 | 0.43 +/− 0.21 | 0.52 +/− 0.16 | 0.50 +/− 0.13 | 0.54 +/− 0.15 |
Film 2 | 0.22 +/− 0.15 | 0.23 +/− 0.17 | 0.44 +/− 0.17 | 0.49 +/− 0.18 | 0.48 +/− 0.19 | 0.52 +/− 0.20 |
Film 3 | 0.29 +/− 0.17 | 0.21 +/− 0.18 | 0.44 +/− 0.21 | 0.52 +/− 0.15 | 0.49 +/− 0.16 | 0.48 +/− 0.17 |
Load Cell 0 1 | 0.20 +/− 0.16 | 0.17 +/− 0.15 | 0.44 +/− 0.18 | 0.51 +/− 0.16 | 0.50 +/− 0.16 | 0.52 +/− 0.17 |
Load Cell 1 | 0.20 +/− 0.19 | 0.19 +/− 0.15 | 0.41 +/− 0.18 | 0.51 +/− 0.15 | 0.48 +/− 0.17 | 0.54 +/− 0.17 |
Load Cell 2 | 0.24 +/− 0.16 | 0.22 +/− 0.15 | 0.45 +/− 0.18 | 0.53 +/− 0.14 | 0.49 +/− 0.16 | 0.53 +/− 0.14 |
Load Cell 3 | 0.23 +/− 0.16 | 0.23 +/− 0.18 | 0.40 +/− 0.19 | 0.50 +/− 0.15 | 0.49 +/− 0.17 | 0.54 +/− 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlson, C.; Turpin, V.-R.; Suliman, A.; Ade, C.; Warren, S.; Thompson, D.E. Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters. Sensors 2021, 21, 156. https://doi.org/10.3390/s21010156
Carlson C, Turpin V-R, Suliman A, Ade C, Warren S, Thompson DE. Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters. Sensors. 2021; 21(1):156. https://doi.org/10.3390/s21010156
Chicago/Turabian StyleCarlson, Charles, Vanessa-Rose Turpin, Ahmad Suliman, Carl Ade, Steve Warren, and David E. Thompson. 2021. "Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters" Sensors 21, no. 1: 156. https://doi.org/10.3390/s21010156
APA StyleCarlson, C., Turpin, V. -R., Suliman, A., Ade, C., Warren, S., & Thompson, D. E. (2021). Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters. Sensors, 21(1), 156. https://doi.org/10.3390/s21010156