Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Feature Selection
2.3. PCA Analysis
2.4. Support Vector Machines
2.5. Accuracy
2.6. Ablation
3. Results and Discussion
3.1. PCA Comparisons
3.2. Classification Accuracy
3.3. Applications of the Study
3.4. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition Using Wearable Sensors. IEEE Commun. Surv. Tutorials 2013, 15, 1192–1209. [Google Scholar] [CrossRef]
- Andreas, B.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-Worn Inertial Sensors. ACM Comput. Surv. 2014, 46, 33:1–33:33. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Xia, L. Human Activity Recognition from 3D Data: A Review. Pattern Recognit. Lett. Celebr. Life Work. Maria Petrou 2014, 48, 70–80. [Google Scholar] [CrossRef]
- Munguia, T.E.; Intille, S.S.; Larson, K. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In Pervasive Computing; Lecture Notes in Computer Science; Ferscha, A., Mattern, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 158–175. [Google Scholar] [CrossRef]
- Ferhat, A.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human Activity Recognition Using Wearable Sensors. Sensors 2015, 15, 31314–31338. [Google Scholar] [CrossRef] [Green Version]
- Cappellini, G.; Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor Patterns in Human Walking and Running. J. Neurophysiol. 2006, 95, 3426–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wege, A.; Zimmermann, A. Electromyography Sensor Based Control for a Hand Exoskeleton. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; pp. 1470–1475. [Google Scholar] [CrossRef]
- Mantyjarvi, J.; Himberg, J.; Seppanen, T. Recognizing Human Motion with Multiple Acceleration Sensors. In Proceedings of the 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), Tucson, AZ, USA, 7–10 October 2001; Volume 2, pp. 747–752. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Li, Y.; Lantz, V.; Wang, K.; Yang, J. A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors. IEEE Trans. Syst. Man. Cybern. Part A Syst. Hum. 2011, 41, 1064–1076. [Google Scholar] [CrossRef]
- Kadrolkar, A.; Sup, F. Classification of Trunk Motion for a Backbone Exoskeleton Using Inertial Data and Surface Electromyography. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 3978–3983. [Google Scholar] [CrossRef]
- Fabien, M.; Gonzenbach, R.R.; Arami, A.; Paraschiv-Ionescu, A.; Luft, A.R.; Aminian, K. Improving Activity Recognition Using a Wearable Barometric Pressure Sensor in Mobility-Impaired Stroke Patients. J. Neuroeng. Rehabil. 2015, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, O.; Xiao, Z.G.; Menon, C. Surface EMG Pattern Recognition for Real-Time Control of a Wrist Exoskeleton. Biomed. Eng. Online 2010, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreas, B.; Roggen, D. Recognition of Visual Memory Recall Processes Using Eye Movement Analysis. In Proceedings of the 13th International Conference on Ubiquitous Computing—UbiComp’11, Beijing, China, 17–21 September 2011; ACM Press: Beijing, China. [Google Scholar] [CrossRef]
- Naik, G.R.; Pendharkar, G.; Nguyen, H.T. Wavelet PCA for Automatic Identification of Walking with and without an Exoskeleton on a Treadmill Using Pressure and Accelerometer Sensors. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1999–2002. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Wang, Z. Segmentation and Recognition of Human Motion Sequences Using Wearable Inertial Sensors. Multimed. Tools Appl. 2018, 77, 21201–21220. [Google Scholar] [CrossRef]
- Wolf, M.T.; Assad, C.; Stoica, A.; You, K.; Jethani, H.; Vernacchia, M.T.; Fromm, J.; Iwashita, Y. Decoding Static and Dynamic Arm and Hand Gestures from the JPL BioSleeve. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; pp. 1–9. [Google Scholar] [CrossRef]
- Fogelson, B.; Stirling, L.; Siu, H. Anticipation of Speed Transitions Using Electromyography. In Proceedings of the IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB), New York, NY, USA, 29 November–2 December 2020. [Google Scholar]
- Zardoshti-Kermani, M.; Wheeler, B.C.; Badie, K.; Hashemi, R.M. EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng. 1995, 3, 324–333. [Google Scholar] [CrossRef]
- Phinyomark, A.; Thongpanja, S.; Hu, H.; Phukpattaranont, P.; Limsakul, C. The Usefulness of Mean and Median Frequencies in Electromyography Analysis. Comput. Intell. Electromyogr. Anal. Perspect. Curr. Appl. Future Chall. 2012, 2012, 195–220. [Google Scholar] [CrossRef] [Green Version]
- Svante, W.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Noble, W. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Meyes, R.; Lu, M.; de Puiseau, C.W.; Meisen, T. Ablation Studies in Artificial Neural Networks. arXiv 2019, arXiv:1901.08644. [Google Scholar]
- Kim, J.; Heimgartner, R.; Lee, G.; Karavas, N.; Perry, D.; Ryan, D.L.; Eckert-Erdheim, A.; Murphy, P.; Murphy, P.; Galiana, I.; et al. Autonomous and Portable Soft Exosuit for Hip Extension Assistance with Online Walking and Running Detection Algorithm. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 5473–5480. [Google Scholar] [CrossRef]
- Gazendam, M.G.J.; Hof, A.L. Averaged EMG Profiles in Jogging and Running at Different Speeds. Gait Posture 2007, 25, 604–614. [Google Scholar] [CrossRef] [PubMed]
Speed Threshold (m/s) | ||||
---|---|---|---|---|
Stand | Walk | Run | Sprint | |
Subject 1 | 0 | (0, 1.3] | (1.3, 2.4] | (2.4, ∞] |
Subject 2 | 0 | (0, 1.6] | (1.6, 3.3] | (3.3, ∞] |
Subject 3 | 0 | (0, 1.6] | (1.6, 2.8] | (2.8, ∞] |
Subject 4 | 0 | (0, 1.4] | (1.4, 2.5] | (2.5, ∞] |
Subject 5 | 0 | (0, 1.2] | (1.2, 2.7] | (2.7, ∞] |
Component 1 | Component 2 | Component 3 | |
---|---|---|---|
Component 1 | 21.05° | 90.65° | 89.97° |
Component 2 | 91.15° | 51.05° | 87.42° |
Component 3 | 90.58° | 90.01° | 59.71° |
Comparison | Cohen’s d Value- Allowed Run/Sprint Confusion | Effect Size |
---|---|---|
Case 1 vs. Case 2 | 1.12 | Large |
Case 1 vs. Case 3 | 0.65 | Medium |
Case 1 vs. Case 4 | 0.82 | Large |
Case 1 vs. Case 5 | 0.29 | Small |
Case 1 vs. Case 6 | 0.74 | Large |
Case 1 vs. Case 7 | 0.53 | Medium |
Case 1 vs. Case 8 | 0.91 | Large |
Case 7 vs. Case 8 | 1.66 | Large |
Case 2 vs. Case 3 | −0.85 | Large |
Case 2 vs. Case 4 | −1.04 | Large |
Case 3 vs. Case 5 | −0.67 | Medium |
Case 3 vs. Case 6 | 0.65 | Medium |
Case 6 vs. Case 8 | 0.52 | Medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, S.; Stegall, P.; Edwards, H.; Stirling, L.; Siu, H.C. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running. Sensors 2021, 21, 194. https://doi.org/10.3390/s21010194
Gonzalez S, Stegall P, Edwards H, Stirling L, Siu HC. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running. Sensors. 2021; 21(1):194. https://doi.org/10.3390/s21010194
Chicago/Turabian StyleGonzalez, Sarah, Paul Stegall, Harvey Edwards, Leia Stirling, and Ho Chit Siu. 2021. "Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running" Sensors 21, no. 1: 194. https://doi.org/10.3390/s21010194
APA StyleGonzalez, S., Stegall, P., Edwards, H., Stirling, L., & Siu, H. C. (2021). Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running. Sensors, 21(1), 194. https://doi.org/10.3390/s21010194