The Use of 3D Printing Technology for Manufacturing Metal Antennas in the 5G/IoT Context
Abstract
:1. Introduction
2. Basis Antenna Structure
3. Proposed Metallization Techniques
3.1. Horn Antenna with Copper Tape Metallization
3.2. Horn Antennas with Copper Conductive Paint
3.3. Horn Antennas Built from Conductive Filament
4. Results
4.1. Horn Antenna with Copper Tape Metallization
4.2. Horn Antennas with Copper Paint
4.3. Horn Antennas with Conductive Filament
4.4. Additional Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, D. 5G: Vision and Requirements for Mobile Communication System towards Year 2020. Chin. J. Eng. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Roh, W.; Seol, J.-Y.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Chieh, J.S.; Dick, B.; Loui, S.; Rockway, J.D. Development of a Ku-Band Corrugated Conical Horn Using 3-D Print Technology. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 201–204. [Google Scholar] [CrossRef]
- Balanis, C. Antenna Theory; Wiley-Interscience: Hoboken, NJ, USA, 2016. [Google Scholar]
- Zhang, B.; Linnér, P.; Karnfelt, C.; Tarn, P.L.; Södervall, U.; Zirath, H. Attempt of the metallic 3D printing technology for millimeter-wave antenna implementations. In Proceedings of the 2015 Asia-Pacific Microwave Conference, Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar]
- Georgiadis, A.; Kimionis, J.; Tentzeris, M. 3D/Inkjet-printed millimeter wave components and interconnects for communication and sensing. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium, Miami, FL, USA, 22–25 October 2017; pp. 1–4. [Google Scholar]
- Menéndez, L.G.; Kim, O.S.; Persson, F.; Nielsen, M.; Breinbjerg, O. 3D printed 20/30-GHz dual-band offset stepped-reflector antenna. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–2. [Google Scholar]
- Adeyeye, A.O.; Bahr, R.A.; Tentzeris, M. 3D Printed 2.45 GHz Yagi-Uda Loop Antenna Utilizing Microfluidic Channels and Liquid Metal. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1983–1984. [Google Scholar]
- Chuma, E.; Iano, Y.; Roger, L.; Scroccaro, M.; Frazatto, F.; Manera, L. Performance Analysis of X Band Horn Antennas using Additive Manufacturing Method Coated with Different Techniques. J. Microw. Optoelectron. Electromagn. Appl. 2019, 18, 263–269. [Google Scholar] [CrossRef]
- Teniente, J.; Iriarte, J.C.; Caballero, R.; Valcázar, D.; Goñi, M.; Martínez, A. 3-D Printed Horn Antennas and Components Performance for Space and Telecommunications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2070–2074. [Google Scholar] [CrossRef]
- Yao, W.H.; Sharma, S.; Henderson, R.; Ashrafi, S.; MacFarlane, D. Ka band 3D printed horn antennas. In Proceedings of the 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 30–31 March 2017; pp. 1–4. [Google Scholar]
- Wu, L.; Chu, H.; Cao, D.; Peng, S.; Guo, Y. 3-D Printed Antenna Subsystem with Dual-Polarization and its Test in System Level for Radiometer Applications. IEEE Access 2020, 8, 127856–127865. [Google Scholar] [CrossRef]
- Alkaraki, S.; Andy, A.S.; Gao, Y.; Tong, K.-F.; Ying, Z.; Donnan, R.; Parini, C. Compact and Low-Cost 3-D Printed Antennas Metalized Using Spray-Coating Technology for 5G mm-Wave Communication Systems. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2051–2055. [Google Scholar] [CrossRef]
- Alkaraki, S.; Gao, Y.; Stremsdoerfer, S.; Gayets, E.; Parini, C.G. 3D Printed Corrugated Plate Antennas With High Aperture Efficiency and High Gain at X-Band and Ka-Band. IEEE Access 2020, 8, 30643–30654. [Google Scholar] [CrossRef]
- Luo, N.; Mishra, G.; Sharma, S.; Yu, X. Experimental Verification of 3D Metal Printed Dual Circular-Polarized Horn Antenna at V-Band. In Proceedings of the Antenna Measurement Techniques Association Symposium, San Diego, CA, USA, 6–11 October 2019; pp. 1–6. [Google Scholar]
- Agnihotri, I.; Sharma, S.K. Design of a 3D Metal Printed Axial Corrugated Horn Antenna Covering Full Ka-Band. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 522–526. [Google Scholar] [CrossRef]
- Helena, D.; Ramos, A.; Varum, T.; Matos, J. Evaluation of Different Materials to Design 3D Printed Horn Antennas for Ku-Band. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aveiro, Portugal, 10–14 November 2019. [Google Scholar]
- Colella, R.; Chietera, F.P.; Catarinucci, L.; Salmeron, J.F.; Rivadeneyra, A.; Carvajal, M.A.; Palma, A.J.; Capitán-Vallvey, L.F. Fully 3D-Printed RFID Tags based on Printable Metallic Filament: Performance Comparison with other Fabrication Techniques. In Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, 9–13 September 2019; pp. 253–257. [Google Scholar]
- Roy, S.; Qureshi, M.B.; Asif, S.; Braaten, B.D. A model for 3D-printed microstrip transmission lines using conductive electrifi filament. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 1099–1100. [Google Scholar]
- Mirzaee, M.; Noghanian, S.; Wiest, L.; Chang, I. Developing flexible 3D printed antenna using conductive ABS materials. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–25 July 2015; pp. 1308–1309. [Google Scholar]
- Piekarz, I.; Sorocki, J.; Slomian, I.; Wincza, K.; Gruszczynski, S. Experimental Verification of 3D Printed Low-Conductivity Graphene-Enhanced PLA Absorbers for Back Lobe Suppression in Aperture-Coupled Antennas. In Proceedings of the IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Cartagena, Colombia, 10–14 September 2018; pp. 780–782. [Google Scholar]
- Pizarro, F.; Salazar, R.; Rajo-Iglesias, E.; Rodríguez, M.; Fingerhuth, S.; Hermosilla, G. Parametric Study of 3D Additive Printing Parameters Using Conductive Filaments on Microwave Topologies. IEEE Access 2019, 7, 106814–106823. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Falkner, B.; Singh, S.; Mehta, A.; Milward, S.S.; Butcher, D.; Lavery, N.; Brown, S.G. 3D Metal Printed Polarization Reconfigurable Horn Antenna with Solid & Meshed Structures: Future works for SATCOM applications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1501–1502. [Google Scholar]
- Striker, R.; Mitra, D.; Braaten, B.D.; Kabir, K.S.; Roy, S. On the Manufacturing Process of a Single-Step Fully 3D Printed Conformal Patch Antenna. In Proceedings of the IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020; pp. 288–292. [Google Scholar]
- Radha, S.M.; Shin, G.; Park, P.; Yoon, I. Realization of Electrically Small, Low-Profile Quasi-Isotropic Antenna Using 3D Printing Technology. IEEE Access 2020, 8, 27067–27073. [Google Scholar] [CrossRef]
- Khan, Z.; He, H.; Chen, X.; Virkki, J. Dipole Antennas 3D-printed from Conductive Thermoplastic Filament. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tønsberg, Norway, 15–18 September 2020; pp. 1–4. [Google Scholar]
- Gu, C.; Gao, S.; Fusco, V.; Gibbons, G.; Sanz-Izquierdo, B.; Standaert, A.; Reynaert, P.; Bosch, W.; Gadringer, M.; Xu, R.; et al. A D-Band 3D-Printed Antenna. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 433–442. [Google Scholar] [CrossRef]
- Chu, L.J.; Barrow, W.L. Electromagnetic Horn Design. Trans. Am. Inst. Electr. Eng. 1939, 58, 333–338. [Google Scholar] [CrossRef]
- Balanis, C. Modern Antenna Handbook; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Kopsacheilis, C.; Charalampous, P.; Kostavelis, I.; Tzovaras, D. In Situ Visual Quality Control in 3D Printing. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Valetta, Malta, 27–29 February 2020; pp. 317–324. [Google Scholar] [CrossRef]
- Alkaraki, S.; Gao, Y.; Torrico, M.O.M.; Stremsdoerfer, S.; Gayets, E.; Parini, C. Performance Comparison of Simple and Low Cost Metallization Techniques for 3D Printed Antennas at 10 GHz and 30 GHz. IEEE Access 2018, 6, 64261–64269. [Google Scholar] [CrossRef]
- Mitra, D.; Roy, S.; Striker, R.; Burczek, E.; Aqueeb, A.; Wolf, H.; Kabir, K.; Ye, S.; Braaten, B. Conductive Electrifi and Nonconductive NinjaFlex Filaments based Flexible Microstrip Antenna for Changing Conformal Surface Applications. Electronics 2021, 10, 821. [Google Scholar] [CrossRef]
- Amils, R.; Gallego, J.; Sebastián, J.; Muñoz, S.; Martín, A.; Leuther, A. Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements. Cryogenics 2016, 76, 23–28. [Google Scholar] [CrossRef]
Parameters | wg_a | wg_b | Horn_A | Horn_B | Horn_L | La |
---|---|---|---|---|---|---|
Dimensions (mm) | 8.18 | 3.85 | 17.9 | 16 | 8 | 2.05 |
Measures | R1 | R2 | R3 | R4 | R5 | R6 | |
---|---|---|---|---|---|---|---|
Resistance (mm) | 11.3 Ω | 11.0 Ω | 11.0 Ω | 11.5 Ω | 11.3 Ω | 11.2 Ω | 11.22 Ω |
Length l (cm) | Section A (cm2) | Resistance R (Ω) | Resistivity ρ (Ω·cm) | Conductivity σ (S/m) |
---|---|---|---|---|
10 | 0.04 | 11.22 | 0.045 | 2.22 × 103 |
Printing Setting | PLA | Electrifi |
---|---|---|
Printing speed | 70 mm/s | 15 mm/s |
Printing temperature | 200 °C | 140 °C |
Layer height | 0.3 mm | 0.2 mm |
Parameters | wg_a | wg_b | Horn_A | Horn_B | Horn_L | La |
---|---|---|---|---|---|---|
Dimensions (mm) | 8.35 | 3.85 | 22 | 17.15 | 13.25 | 2.15 |
Antenna | Bandwidth | Gain@ 28 GHz | Production Cost | Total Weight |
---|---|---|---|---|
Copper tape | 7.19 GHz (26.0%) | 11.2 dBi | 0.45 € | 2.6 g |
4 layers of paint | 7.13 GHz (25.1%) | 10.8 dBi | 0.18 € | 2.3 g |
3 layers of paint (sanded) | 2.86 GHz (10.2%) | 11.8 dBi | 0.14 € | 2.3 g |
Electrifi | 16.52 GHz (58.6%) | 12.0 dBi | 1.78 € | 2.5 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helena, D.; Ramos, A.; Varum, T.; Matos, J.N. The Use of 3D Printing Technology for Manufacturing Metal Antennas in the 5G/IoT Context. Sensors 2021, 21, 3321. https://doi.org/10.3390/s21103321
Helena D, Ramos A, Varum T, Matos JN. The Use of 3D Printing Technology for Manufacturing Metal Antennas in the 5G/IoT Context. Sensors. 2021; 21(10):3321. https://doi.org/10.3390/s21103321
Chicago/Turabian StyleHelena, Diogo, Amélia Ramos, Tiago Varum, and João N. Matos. 2021. "The Use of 3D Printing Technology for Manufacturing Metal Antennas in the 5G/IoT Context" Sensors 21, no. 10: 3321. https://doi.org/10.3390/s21103321
APA StyleHelena, D., Ramos, A., Varum, T., & Matos, J. N. (2021). The Use of 3D Printing Technology for Manufacturing Metal Antennas in the 5G/IoT Context. Sensors, 21(10), 3321. https://doi.org/10.3390/s21103321