Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology
Abstract
:1. Introduction
2. Theoretical Analysis
3. Magnetocrystalline Anisotropy Energy Model
4. Experimental Measurement Method
4.1. MBN Test
4.2. Microstructure
4.3. EBSD Testing
5. Analysis and Discussion
5.1. Influences of Detection Parameters on Experimental Results
5.2. Evaluation of MCE with MBN Technology
6. Conclusions
- (1)
- Based on the concept of coordinate transformation, the material macroscopic reference coordinate system was combined with the microscopic grain orientation. The EBSD technology was used to measure the micro-texture of the local area, and a model was established to simulate the magnetocrystalline anisotropy of given materials.
- (2)
- With MBN technology, the magnetic anisotropy of materials was evaluated. The obtained experimental results were in good agreement with the results of the MCE model, indicating that the MBN technology could be used to evaluate the MCE of pipeline steel and oriented silicon steel.
- (3)
- The MBN experimental results obtained under different detection parameters were significantly different, so it is necessary to determine the optimal detection parameters for exploring magnetic anisotropy.
- (4)
- Non-oriented silicon steel has a nearly isotropic crystallographic texture and it is difficult to predict its MCE with MBN technology. Due to the residual stress in silicon steel materials, the MCE evaluation method based on MBN technology was more suitable for pipeline steel than silicon steel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.D.; Fan, Z.C.; Cui, J. Risk based design, manufacture and maintenance of extreme pressure equipment. J. Mech. Eng. 2013, 49, 66–75. [Google Scholar] [CrossRef]
- Gur, H.; Akcaoglu, F.U. Monitoring magnetic anisotropy variations in cold-rolled steel sheets by magnetic markhausen noise Method. In Proceedings of the 11th European Conference on NDT, Prague, Czech Republic, 6–10 October 2014. [Google Scholar]
- Stupakov, O.; Pal’a, J.; Tomáš, I.; Bydžovský, J.; Novák, V. Investigation of magnetic response to plastic deformation of low-carbon steel. Mater. Sci. Eng. A 2007, 462, 351–354. [Google Scholar] [CrossRef]
- Maciusowicz, M.; Psuj, G. Time-frequency analysis of barkhausen noise for the needs of anisotropy evaluation of grain-oriented steels. Sensors 2020, 20, 768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espina-Hernández, J.H.; Pérez-Benítez, J.A.; Caleyo, F.; Baudin, T.; Helbert, A.L.; Hallen, J.M. Barkhausen noise measurements give direct observation of magnetocrystalline anisotropy energy in ferromagnetic polycrystals. J. Phys. D Appl. Phys. 2013, 46, 392001. [Google Scholar] [CrossRef]
- Capo-Sanchez, J.; Perez-Benitez, J.A.; Padovese, L.R. Analysis of the stress dependent magnetic easy axis in ASTM 36 steel by the magnetic Barkhausen noise. NDT E Int. 2007, 40, 168–172. [Google Scholar] [CrossRef]
- Caldas-Morgan, M.; Padovese, L.R. Fast detection of the magnetic easy axis on steel sheet using the continuous rotational Barkhausen method. NDT E Int. 2012, 45, 148–155. [Google Scholar] [CrossRef]
- Manh, T.L.; Caleyo, F.; Hallen, J.M.; Perez-Benitez, J.A.; Espina-Hernández, J.H. Estimation of magnetocrystalline anisotropy energy from Barkhausen noise measurements in API 5L steels. Int. J. Appl. Electromagn. Mech. 2015, 48, 171–179. [Google Scholar] [CrossRef]
- Manh, T.L.; Caleyo, F.; Hallen, J.M.; Espina-Hernández, J.H.; Pérez-Benitez, J.A. Model for the correlation between magnetocrystalline energy and Barkhausen noise in ferromagnetic materials. J. Magn. Magn. Mater. 2018, 454, 155–164. [Google Scholar] [CrossRef]
- Martínez-Ortiz, P.; Pérez-Benitez, J.A.; Caleyo, F.; Hallen, J.M. On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise. J. Magn. Magn. Mater. 2015, 374, 67–74. [Google Scholar] [CrossRef]
- Alessandro, B.; Beatrice, C.; Bertotti, G.; Montorsi, A. Phenomenology and interpretation of the Barkhausen effect in ferromagnetic materials. J. Appl. Phys. 1988, 64, 5355–5360. [Google Scholar] [CrossRef]
- Bertotti, G.; Fiorillo, F. Bloch wall motion in Si-Fe investigated through surface e.m.f. measurements. J. Magn. Magn. Mater. 1984, 41, 303–305. [Google Scholar] [CrossRef]
- Alessandro, B.; Beatrice, C.; Bertotti, G.; Montorsi, A. Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II. Experiments. J. Appl. Phys. 1990, 68, 2908–2915. [Google Scholar] [CrossRef] [Green Version]
- Jiles, D.C.; Atherton, D.L. Theory of magnetic hysteresis. J. Magn. Magn. Mater. 1986, 61, 48–60. [Google Scholar] [CrossRef]
- Jiles, D.C.; Sipahi, L.B.; Williams, G. Modeling of micromagnetic Barkhausen activity using a stochastic process extension to the theory of hysteresis. J. Appl. Phys. 1993, 73, 5830–5832. [Google Scholar] [CrossRef] [Green Version]
- Krause, T.W.; Makar, J.M.; Atherton, D.L. Investigation of the magnetic field and stress dependence of 180° domain wall motion in pipeline steel using magnetic Barkhausen noise. J. Magn. Magn. Mater. 1994, 137, 25–34. [Google Scholar] [CrossRef]
- He, Y.; Mehdi, M.; Hilinski, E.J.; Edrisy, A.; Mukundan, S.; Mollaeian, A.; Kar, N.C. Evaluation of local anisotropy of magnetic response from non-oriented electrical steel by magnetic barkhausen noise. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Clapham, L.; Heald, C.; Krause, T.; Atherton, D.L. Origin of a magnetic easy axis in pipeline steel. J. Appl. Phys. 1999, 86, 1574. [Google Scholar] [CrossRef]
- Manh, T.L.; Caleyo, F.; Hallen, J.M.; Pérez-Benítez, J.A.; Espina-Hernández, J.H. On the correlation of magnetocrystalline energy and Barkhausen noise in API 5L Steels: A stochastic model. J. Electr. Eng. 2015, 66, 45–49. [Google Scholar]
- Campos, M. Methods for texture improvement in electrical steels. Przegląd Elektrotech. 2019, 95, 7–11. [Google Scholar] [CrossRef]
- Startseva, I.E.; Shulika, V.V.; Lukshina, V.A. Effect of quenching destabilization of domain structure on magnetic properties of silicon iron. J. Magn. Magn. Mater. 1983, 41, 292–294. [Google Scholar] [CrossRef]
- Landgraf, F.; Yonamine, T.; Takanohashi, R.; Silva, F.Q.; Tosetti, J.P.V.; Neto, F.B.; Albertin, E.; Mazzarella, V.N.G.; Falleiros, I.G.S.; Emura, M. Magnetic properties of silicon steel with as-cast columnar structure. J. Magn. Magn. Mater. 2003, 254, 364–366. [Google Scholar] [CrossRef]
- Ranjan, R.; Jiles, D.C.; Buck, O.; Thompson, R.B. Grain size measurement using magnetic and acoustic Barkhausen noise. J. Appl. Phys. 1987, 61, 3199–3201. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Tsurekawa, S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 1999, 47, 15–16. [Google Scholar] [CrossRef]
- Yamaura, S.; Furuya, Y.; Watanabe, T. The effect of grain boundary microstructure on Barkhausen noise in ferromagnetic materials. Acta Mater. 2001, 49, 3019–3027. [Google Scholar] [CrossRef]
- Capó-Sánchez, J.; Pérez-Benitez, A.; Padovese, L.R. Dependence of the magnetic Barkhausen emission with carbon content in commercial steels. J. Mater. Sci. 2004, 39, 1367–1370. [Google Scholar] [CrossRef]
- Gorkunov, E.S.; Povolotskaya, A.M.; Solov’Ev, K.E.; Zadvorkin, S.M. Effect of Plastic deformation and its localization zones on magnetic characteristics of steel 45. Russ. J. Nondestruct. Test. 2009, 45, 521–525. [Google Scholar] [CrossRef]
- Moorthy, V. Important factors influencing the magnetic barkhausen noise profile. IEEE Trans. Magn. 2016, 52, 1–13. [Google Scholar] [CrossRef]
- Goodenough, J.B. A theory of domain creation and coercive force in polycrystalline ferromagnetics. Phys. Rev. 1954, 95, 917. [Google Scholar] [CrossRef]
- Chikazumi, S.; Graham, C.D. Physics of Ferromagnetism 2e; Oxford University Press on Demand: New York, NY, USA, 2009. [Google Scholar]
- Mao, W.M.; Zhang, X.M. Quantitative Texture Analysis of Crystalline Materials; Metallurgical Industry Press: Beijing, China, 1993. [Google Scholar]
- Bunge, H.J. Texture and magnetic properties. Textures Microstruct. 1989, 11, 75–91. [Google Scholar] [CrossRef] [Green Version]
Electromagnet Numbers | Parameters (mm) | |||
---|---|---|---|---|
A | B | C | D | |
CX-1 | 120 | 80 | 60 | 30 |
CX-2 | 60 | 35 | 30 | 15 |
CX-3 | 30 | 35 | 10 | 10 |
Detection Parameters | Electromagnet Numbers | Excitation Frequency/Hz | Excitation Field Amplitude/V |
---|---|---|---|
Group 1 | CX-1 | 20 | 4 |
Group 2 | CX-2 | 20 | 4 |
Group 3 | CX-3 | 20 | 4 |
Group 4 | CX-1 | 20 | 1 |
Group 5 | CX-1 | 20 | 2 |
Group 6 | CX-1 | 20 | 3 |
Group 7 | CX-1 | 20 | 5 |
Group 8 | CX-1 | 20 | 6 |
Group 9 | CX-1 | 1 | 4 |
Group 10 | CX-1 | 10 | 4 |
Group 11 | CX-1 | 50 | 4 |
Group 12 | CX-1 | 100 | 4 |
Material | Numbers of Measuring Points | Numbers of Grains |
---|---|---|
30SQG120 | 34,700 | 2 |
B50A470 | 216,250 | 1447 |
X60 | 216,750 | 3016 |
X70 | 216,250 | 1887 |
Parameters | Method | 30SQG120 | X60 | X70 | ||
---|---|---|---|---|---|---|
θy/° | Simulation | 37 | 136 | 101 | 134 | 45 |
Experiment | 24.59 | 146.15 | 99.2 | 120.32 | 57.30 | |
θn/° | Simulation | 82 | 151 | 0 | ||
Experiment | 92.29 | 1.15 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; He, C.; Liu, X. Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology. Sensors 2021, 21, 3330. https://doi.org/10.3390/s21103330
Wang L, He C, Liu X. Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology. Sensors. 2021; 21(10):3330. https://doi.org/10.3390/s21103330
Chicago/Turabian StyleWang, Liting, Cunfu He, and Xiucheng Liu. 2021. "Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology" Sensors 21, no. 10: 3330. https://doi.org/10.3390/s21103330
APA StyleWang, L., He, C., & Liu, X. (2021). Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology. Sensors, 21(10), 3330. https://doi.org/10.3390/s21103330