Characterizing Smart Environments as Interactive and Collective Platforms: A Review of the Key Behaviors of Responsive Architecture
Abstract
:1. Introduction
- IBs are architectural behaviors involving transformation of physical forms or modification of environmental services that are visually apparent or perceptible in the environment. Rather than simply considering one-way service provisions from a building to a user, it encompasses two-way, continuously evolving, interactive responsiveness.
- CBs are sensing, thinking and controlling behaviors that collectively occur in an electronic (or digital) environment. Since most IBs are suggested and executed by CBs, IBs can be understood as a “product”, while CB is a “process”. In addition, sensing information is regarded as a trigger event resulting in architectural changes and/or context-aware services [5]. That is, it initiates CBs that develop IBs exhibited in the smart environment.
2. The Concepts and Behaviors of Responsive Architecture
3. Research Method
4. Findings
4.1. Responsive Architecture
4.1.1. IBs of Responsive Architecture
4.1.2. CBs of Responsive Architecture
4.2. Kinetic Architecture
4.2.1. IBs of Kinetic Architecture
4.2.2. CBs of Kinetic Architecture
4.3. Adaptive Architecture
4.3.1. IBs of Adaptive Architecture
4.3.2. CBs of Adaptive Architecture
4.4. Intelligent Building
4.4.1. IBs of Intelligent Buildings
4.4.2. CBs of Intelligent Buildings
5. Discussion
5.1. Sensing Behaviors
5.2. Key Behaviors of Responsive Architecture
5.3. Interactive and Collective Platform
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Senagala, M. Rethinking Smart Architecture: Some Strategic Design Frameworks. Int. J. Archit. Comput. 2006, 4, 33–46. [Google Scholar] [CrossRef]
- Brodey, W.M. The Design of Intelligent Environments: Soft Architecture. Landscape 1967, 17, 8–12. [Google Scholar]
- Negroponte, N. Toward a Theory of Architecture Machines. J. Archit. Educ. 1969, 23, 9–12. [Google Scholar] [CrossRef]
- Nugent, C.D.; McClean, S.I.; Cleland, I.; Burns, W. 13.18—Sensor Technology for a Safe and Smart Living Environment for the Aged and Infirm at Home. In Comprehensive Materials Processing; Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B., Eds.; Elsevier: Oxford, UK, 2014; pp. 459–472. [Google Scholar]
- Lee, J.H.; Lee, H.; Kim, M.J.; Wang, X.; Love, P.E.D. Context-aware inference in ubiquitous residential environments. Comput. Ind. 2014, 65, 148–157. [Google Scholar] [CrossRef]
- Lee, J.H.; Gu, N.; Mark, T.; Ostwald, M. Rethinking and Designing the Key Behaviors of Architectural Responsiveness in the Digital Age. In Learning, Adapting and Prototyping, Proceedings of the 23rd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) 2018, Beijing, China, 17–19 May 2018; Fukuda, T., Huang, W., Janssen, P., Crolla, K., Alhadidi, S., Eds.; Tsinghua University: Beijing, China, 2018; pp. 359–368. [Google Scholar]
- Asensio, A.; Masip-Bruin, X.; Garcia, J.; Sánchez, S. On the optimality of Concurrent Container Clusters Scheduling over heterogeneous smart environments. Future Gener. Comput. Syst. 2021, 118, 157–169. [Google Scholar] [CrossRef]
- Ho, E.S.L.; Chan, J.C.P.; Chan, D.C.K.; Shum, H.P.H.; Cheung, Y.-M.; Yuen, P.C. Improving posture classification accuracy for depth sensor-based human activity monitoring in smart environments. Comput. Vis. Image Underst. 2016, 148, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; De, D.; Song, W.-Z. Trajectory mining from anonymous binary motion sensors in Smart Environment. Knowl. Based Syst. 2013, 37, 346–356. [Google Scholar] [CrossRef]
- Hajjaji, Y.; Boulila, W.; Farah, I.R.; Romdhani, I.; Hussain, A. Big data and IoT-based applications in smart environments: A systematic review. Comput. Sci. Rev. 2021, 39, 100318. [Google Scholar] [CrossRef]
- Kotsev, A.; Schade, S.; Craglia, M.; Gerboles, M.; Spinelle, L.; Signorini, M. Next Generation Air Quality Platform: Openness and Interoperability for the Internet of Things. Sensors 2016, 16, 403. [Google Scholar] [CrossRef]
- Tao, Z. Advanced Wavelet Sampling Algorithm for IoT based environmental monitoring and management. Comput. Commun. 2020, 150, 547–555. [Google Scholar] [CrossRef]
- Janani, M.; Nataraj, M.; Ganesh, C.R.S. Chapter 9—Mining and monitoring human activity patterns in smart environment-based healthcare systems. In Systems Simulation and Modeling for Cloud Computing and Big Data Applications; Peter, J.D., Fernandes, S.L., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 137–145. [Google Scholar]
- Teixeira, A.; Almeida, N.; Ketsmur, M.; Silva, S. Chapter 6—Effective natural interaction with our sensorized smart homes. In Advances in Ubiquitous Computing; Neustein, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 185–222. [Google Scholar]
- Volpentesta, A.P. A framework for human interaction with mobiquitous services in a smart environment. Comput. Hum. Behav. 2015, 50, 177–185. [Google Scholar] [CrossRef]
- Cicirelli, F.; Fortino, G.; Guerrieri, A.; Spezzano, G.; Vinci, A. Metamodeling of Smart Environments: From design to implementation. Adv. Eng. Inform. 2017, 33, 274–284. [Google Scholar] [CrossRef]
- Yong, X.; Xinxin, T.; Su, Z.; Yao, W.; Rui, C. Construction and application of digital creative platform for digital creative industry based on smart city concept. Comput. Electr. Eng. 2020, 87, 106748. [Google Scholar] [CrossRef]
- Dhiman, C.; Vishwakarma, D.K. A review of state-of-the-art techniques for abnormal human activity recognition. Eng. Appl. Artif. Intell. 2019, 77, 21–45. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices. Sensors 2016, 16, 338. [Google Scholar] [CrossRef] [Green Version]
- Jo, T.H.; Ma, J.H.; Cha, S.H. Elderly Perception on the Internet of Things-Based Integrated Smart-Home System. Sensors 2021, 21, 1284. [Google Scholar] [CrossRef]
- Sterk, T.d.E. Building upon Negroponte: A hybridized model of control suitable for responsive architecture. Autom. Constr. 2005, 14, 225–232. [Google Scholar] [CrossRef]
- Negroponte, N. Soft Architecture Machines; MIT Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Rajan, K.; Saffiotti, A. Towards a science of integrated AI and Robotics. Artif. Intell. 2017, 247, 1–9. [Google Scholar] [CrossRef] [Green Version]
- McCullough, M. Digital Ground: Architecture, Pervasive Computing, and Environmental Knowing; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Greenfield, A. Everyware: The Dawning Age of Ubiquitous Computing; New Riders: Berkeley, CA, USA, 2006. [Google Scholar]
- Gruber, P.; Gosztonyi, S. Skin in architecture: Towards bioinspired facades. WIT Trans. Ecol. Environ. 2010, 138, 503–513. [Google Scholar]
- Yoon, M.J. Public Works. J. Archit. Educ. 2008, 61, 59–68. [Google Scholar] [CrossRef]
- Lee, J.H.; Ostwald, M.J.; Gu, N. Design Thinking and the Digital Ecosystem. In Design Thinking: Creativity, Collaboration and Culture; Springer International Publishing: Cham, Swizerland, 2020; pp. 165–188. [Google Scholar]
- Elia, G.; Margherita, A.; Passiante, G. Digital entrepreneurship ecosystem: How digital technologies and collective intelligence are reshaping the entrepreneurial process. Technol. Forecast. Soc. Chang. 2020, 150, 119791. [Google Scholar] [CrossRef]
- Velikov, K.; Thün, G.; Ripley, C. Thick Air. J. Archit. Educ. 2012, 65, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Zuk, W. Kinetic Architecture; Van Nostrand Reinhold: New York, NY, USA, 1970. [Google Scholar]
- Meagher, M. Designing for change: The poetic potential of responsive architecture. Front. Archit. Res. 2015, 4, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, W.J. Beyond the Ivory Tower: Constructing Complexity in the Digital Age. Science 2004, 303, 1472–1473. [Google Scholar] [PubMed] [Green Version]
- Chung, K.-Y.; Yoo, J.; Kim, K.J. Recent trends on mobile computing and future networks. Pers. Ubiquitous Comput. 2014, 18, 489–491. [Google Scholar] [CrossRef] [Green Version]
- Menges, A.; Reichert, S. Material Capacity: Embedded Responsiveness. Archit. Des. 2012, 82, 52–59. [Google Scholar] [CrossRef]
- Wigginton, M.; Harris, J. Intelligent Skins; Butterworth-Heinemann: Oxford, UK, 2002. [Google Scholar]
- Addington, D.M.; Schodek, D.L. Smart Materials and New Technologies: For the Architecture and Design Professions; Architectural Press: Oxford, UK, 2005. [Google Scholar]
- Khoo, C.K.; Salim, F.; Burry, J. Designing Architectural Morphing Skins with Elastic Modular Systems. Int. J. Archit. Comput. 2011, 9, 397–419. [Google Scholar] [CrossRef]
- Sung, D. Smart Geometries for Smart Materials: Taming Thermobimetals to Behave. J. Archit. Educ. 2016, 70, 96–106. [Google Scholar] [CrossRef]
- Trubiano, F. Nanomaterial + Super-Insulator = Aerogel. In Design and Construction of High-Performance Homes: Building Envelopes, Renewable Energies and Integrated Practice; Trubiano, F., Ed.; Routledge: New York, NY, USA, 2013; pp. 93–104. [Google Scholar]
- Kroner, W.M. An intelligent and responsive architecture. Autom. Constr. 1997, 6, 381–393. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mohammadi, M.; Rosemann, A.; Schröder, T.; Lichtenberg, J. A morphological approach for kinetic façade design process to improve visual and thermal comfort: Review. Build. Environ. 2019, 153, 186–204. [Google Scholar] [CrossRef]
- Oungrinis, K.-A.; Liapi, M. Spatial Elements Imbued with Cognition: A possible step toward the “Architecture Machine”. Int. J. Archit. Comput. 2014, 12, 419–438. [Google Scholar] [CrossRef]
- Ramzy, N.; Fayed, H. Kinetic systems in architecture: New approach for environmental control systems and context-sensitive buildings. Sustain. Cities Soc. 2011, 1, 170–177. [Google Scholar] [CrossRef]
- Sutherland, I.E. A head-mounted three dimensional display. In Proceedings of the December 9–11, 1968, Fall Joint Computer Conference, Part I; ACM: San Francisco, CA, USA, 1968; pp. 757–764. [Google Scholar]
- Rauschnabel, P.A.; Brem, A.; Ivens, B.S. Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google Glass wearables. Comput. Hum. Behav. 2015, 49, 635–647. [Google Scholar] [CrossRef]
- Creagh, H. Cave Automatic Virtual Environment. In Proceedings of the Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No.03CH37480), Indianapolis, IN, USA, 25 September 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 499–504. [Google Scholar]
- Kuchelmeister, V.; Shaw, J.; McGinity, M.; Del Favero, D.; Hardjono, A. Immersive Mixed Media Augmented Reality Applications and Technology. In Advances in Multimedia Information Processing—PCM 2009; Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1112–1118. [Google Scholar]
- Kim, M.J.; Lee, J.H.; Wang, X.; Kim, J.T. Health Smart Home Services incorporating a MAR-based Energy Consumption Awareness System. J. Intell. Robot. Syst. 2015, 79, 523–535. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.F.V. Biomimetics in architectural design. Intell. Build. Int. 2016, 8, 138–149. [Google Scholar] [CrossRef]
- Durai Prabhakaran, R.T.; Spear, M.J.; Curling, S.; Wootton-Beard, P.; Jones, P.; Donnison, I.; Ormondroyd, G.A. Plants and architecture: The role of biology and biomimetics in materials development for buildings. Intell. Build. Int. 2019, 11, 178–211. [Google Scholar] [CrossRef]
- Ricci, A.; Ponzio, C.; Fabbri, K.; Gaspari, J.; Naboni, E. Development of a self-sufficient dynamic façade within the context of climate change. Archit. Sci. Rev. 2020, 64, 103450. [Google Scholar] [CrossRef]
- Holstov, A.; Bridgens, B.; Farmer, G. Hygromorphic materials for sustainable responsive architecture. Constr. Build. Mater. 2015, 98, 570–582. [Google Scholar] [CrossRef] [Green Version]
- Pesenti, M.; Masera, G.; Fiorito, F.; Sauchelli, M. Kinetic Solar Skin: A Responsive Folding Technique. Energy Procedia 2015, 70, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Andreozzi, S.; Bessone, G.I.; Poala, M.B.; Bovo, M.; Amador, S.F.D.A.; Giargia, E.; Niccolai, A.; Papetti, V.; Mariani, S. Self-adaptive Multi-purpose Modular Origami Structure. Procedia Eng. 2016, 161, 1423–1427. [Google Scholar] [CrossRef] [Green Version]
- Loonen, R.C.G.M.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Kim, D.; Kim, Y.; Kim, D.; Koh, J.-s.; Kim, M.-J. 3D-printed attachable kinetic shading device with alternate actuation: Use of shape-memory alloy (SMA) for climate-adaptive responsive architecture. Autom. Constr. 2020, 114, 103151. [Google Scholar] [CrossRef]
- Barozzi, M.; Lienhard, J.; Zanelli, A.; Monticelli, C. The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture. Procedia Eng. 2016, 155, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Park, J.W. Interactive Kinetic Media Facades: A Pedagogical Design System to Support an Integrated Virtual-Physical Prototyping Environment in the Design Process of Media Facades. J. Asian Archit. Build. Eng. 2013, 12, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Megahed, N.A. An exploration of the control strategies for responsive umbrella-like structures. Indoor Built Environ. 2018, 27, 7–18. [Google Scholar] [CrossRef]
- Araji, M.T.; Darragh, S.P.; Boyer, J.L. Paradigm in Sustainability and Environmental Design: Lighting Utilization Contributing to Surplus-Energy Office Buildings. LEUKOS 2012, 9, 25–45. [Google Scholar] [CrossRef]
- Meyboom, A.; Johnson, G.; Wojtowicz, J. Architectronics: Towards a Responsive Environment. Int. J. Archit. Comput. 2011, 9, 77–98. [Google Scholar] [CrossRef]
- Bitterman, N.; Shach-Pinsly, D. Smart home—A challenge for architects and designers. Archit. Sci. Rev. 2015, 58, 266–274. [Google Scholar] [CrossRef]
- Premier, A. Solar shading devices integrating smart materials: An overview of projects, prototypes and products for advanced façade design. Archit. Sci. Rev. 2019, 62, 455–465. [Google Scholar] [CrossRef]
- Al-Masrani, S.M.; Al-Obaidi, K.M. Dynamic shading systems: A review of design parameters, platforms and evaluation strategies. Autom. Constr. 2019, 102, 195–216. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Svetozarevic, B.; Jayathissa, P.; Begle, M.; Hofer, J.; Lydon, G.; Willmann, A.; Schlueter, A. The Adaptive Solar Facade: From concept to prototypes. Front. Archit. Res. 2016, 5, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Manu, S.; Brager, G.; Rawal, R.; Geronazzo, A.; Kumar, D. Performance evaluation of climate responsive buildings in India—Case studies from cooling dominated climate zones. Build. Environ. 2019, 148, 136–156. [Google Scholar] [CrossRef]
- Naboni, R.; Breseghello, L.; Kunic, A. Multi-scale design and fabrication of the Trabeculae Pavilion. Addit. Manuf. 2019, 27, 305–317. [Google Scholar] [CrossRef]
- Reichert, S.; Menges, A.; Correa, D. Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Aided Des. 2015, 60, 50–69. [Google Scholar] [CrossRef]
- Thomsen, M.R.; Bech, K. Suggesting the Unstable: A Textile Architecture. Textile 2012, 10, 276–289. [Google Scholar] [CrossRef]
- Vazquez, E.; Gürsoy, B.; Duarte, J.P. Formalizing shape-change: Three-dimensional printed shapes and hygroscopic material transformations. Int. J. Archit. Comput. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Zhang, V.; Rosenwasser, D.; Sabin, J.E. PolyTile 2.0: Programmable microtextured ceramic architectural tiles embedded with environmentally responsive biofunctionality. Int. J. Archit. Comput. 2020. [Google Scholar] [CrossRef]
- Megahed, N.A. Understanding kinetic architecture: Typology, classification, and design strategy. Archit. Eng. Des. Manag. 2017, 13, 130–146. [Google Scholar] [CrossRef]
- Holden, S. The kinetic architecture of Jean Tinguely’s culture stations. J. Archit. 2019, 24, 51–72. [Google Scholar] [CrossRef]
- Akgün, Y.; Gantes, C.J.; Kalochairetis, K.E.; Gkagka, E.E. A proposal for a convertible stadium roof structure derived from Watt-I linkage. Mech. Based Des. Struct. Mach. 2017, 45, 271–279. [Google Scholar] [CrossRef]
- Aviv, D.; Meggers, F. Cooling oculus for desert climate—dynamic structure for evaporative downdraft and night sky cooling. Energy Procedia 2017, 122, 1123–1128. [Google Scholar] [CrossRef]
- Beatini, V. Translational Method for Designing Folded Plate Structures. Int. J. Space Struct. 2015, 30, 85–97. [Google Scholar] [CrossRef]
- Korkmaz, K.; Akgün, Y.; Maden, F. Design of a 2-DOF 8R Linkage for Transformable Hypar Structure. Mech. Based Des. Struct. Mach. 2012, 40, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Phocas, M.C.; Kontovourkis, O.; Matheou, M. Kinetic Hybrid Structure Development and Simulation. Int. J. Archit. Comput. 2012, 10, 67–86. [Google Scholar] [CrossRef]
- Vergauwen, A.; Laet, L.D.; Temmerman, N.D. Computational modelling methods for pliable structures based on curved-line folding. Comput. Aided Des. 2017, 83, 51–63. [Google Scholar] [CrossRef]
- Beatini, V.; Korkmaz, K. Shapes of Miura Mesh Mechanism with Mobility One. Int. J. Space Struct. 2013, 28, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Jayathissa, P.; Caranovic, S.; Hofer, J.; Nagy, Z.; Schlueter, A. Performative design environment for kinetic photovoltaic architecture. Autom. Constr. 2018, 93, 339–347. [Google Scholar] [CrossRef]
- Eilouti, B. Scenario-based design: New applications in metamorphic architecture. Front. Archit. Res. 2018, 7, 530–543. [Google Scholar] [CrossRef]
- Orhon, A.V. Adaptive building shells. In Developments in Science and Engineering; Efe, R., Matchavariani, L., Yaldır, A., Lévai, L., Eds.; St. Kliment Ohridski University Press: Sofia, Bulgaria, 2016; pp. 555–567. [Google Scholar]
- Abdullah, Y.S.; Al-Alwan, H.A.S. Smart material systems and adaptiveness in architecture. Ain Shams Eng. J. 2019, 10, 623–638. [Google Scholar] [CrossRef]
- Pelliccia, G.; Baldinelli, G.; Bianconi, F.; Filippucci, M.; Fioravanti, M.; Goli, G.; Rotili, A.; Togni, M. Characterisation of wood hygromorphic panels for relative humidity passive control. J. Build. Eng. 2020, 32, 101829. [Google Scholar] [CrossRef]
- Wood, D.; Vailati, C.; Menges, A.; Rüggeberg, M. Hygroscopically actuated wood elements for weather responsive and self-forming building parts—Facilitating upscaling and complex shape changes. Constr. Build. Mater. 2018, 165, 782–791. [Google Scholar] [CrossRef]
- López, M.; Rubio, R.; Martín, S.; Ben, C. How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [Google Scholar] [CrossRef]
- Sher, E.; Chronis, A.; Glynn, R. Adaptive behavior of structural systems in unpredictable changing environments by using self-learning algorithms: A case study. Simulation 2014, 90, 991–1006. [Google Scholar] [CrossRef]
- Phocas, M.C.; Christoforou, E.G.; Dimitriou, P. Kinematics and control approach for deployable and reconfigurable rigid bar linkage structures. Eng. Struct. 2020, 208, 110310. [Google Scholar] [CrossRef]
- Christoforou, E.G.; Phocas, M.C.; Matheou, M.; Müller, A. Experimental implementation of the ‘effective 4-bar method’ on a reconfigurable articulated structure. Structures 2019, 20, 157–165. [Google Scholar] [CrossRef]
- Kabošová, L.; Foged, I.; Kmeť, S.; Katunský, D. Hybrid design method for wind-adaptive architecture. Int. J. Archit. Comput. 2019, 17, 307–322. [Google Scholar] [CrossRef]
- Leistner, S.; Honold, C.; Maierhofer, M.; Haase, W.; Blandini, L.; Sobek, W.; Roth, D.; Binz, H.; Menges, A. Research on integral design and planning processes for adaptive buildings. Archit. Eng. Des. Manag. 2020, 1–20. [Google Scholar] [CrossRef]
- Pruitt, L.N.D.; Kramer, S.W. How Historical Solutions to Thermal Comfort Influenced Modern Construction Efforts. Procedia Eng. 2017, 196, 880–887. [Google Scholar] [CrossRef]
- Schnädelbach, H.; Slovák, P.; Fitzpatrick, G.; Jäger, N. The immersive effect of adaptive architecture. Pervasive Mob. Comput. 2016, 25, 143–152. [Google Scholar] [CrossRef]
- De Paz, J.F.; Bajo, J.; Rodríguez, S.; Villarrubia, G.; Corchado, J.M. Intelligent system for lighting control in smart cities. Inf. Sci. 2016, 372, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Naboni, E.; Malcangi, A.; Zhang, Y.; Barzon, F. Defining The Energy Saving Potential of Architectural Design. Energy Procedia 2015, 83, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Mofidi, F.; Akbari, H. Intelligent buildings: An overview. Energy Build. 2020, 223, 110192. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Z.; Fan, C. Building energy savings: Analysis of research trends based on text mining. Autom. Constr. 2018, 96, 398–410. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, F.; Feng, Q. Cost-benefit evaluation for building intelligent systems with special consideration on intangible benefits and energy consumption. Energy Build. 2016, 128, 484–490. [Google Scholar] [CrossRef]
- Dong, B.; Prakash, V.; Feng, F.; O’Neill, Z. A review of smart building sensing system for better indoor environment control. Energy Build. 2019, 199, 29–46. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Aiello, M. Energy intelligent buildings based on user activity: A survey. Energy Build. 2013, 56, 244–257. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Korres, N.E.; Ploennigs, J.; Elhadi, H.; Menzel, K. Mining building performance data for energy-efficient operation. Adv. Eng. Inform. 2011, 25, 341–354. [Google Scholar] [CrossRef]
- Habibi, S. Micro-climatization and real-time digitalization effects on energy efficiency based on user behavior. Build. Environ. 2017, 114, 410–428. [Google Scholar] [CrossRef]
- Kar, P.; Shareef, A.; Kumar, A.; Harn, K.T.; Kalluri, B.; Panda, S.K. ReViCEE: A recommendation based approach for personalized control, visual comfort & energy efficiency in buildings. Build. Environ. 2019, 152, 135–144. [Google Scholar]
- Cheng, X.; Yang, B.; Hedman, A.; Olofsson, T.; Li, H.; Van Gool, L. NIDL: A pilot study of contactless measurement of skin temperature for intelligent building. Energy Build. 2019, 198, 340–352. [Google Scholar] [CrossRef]
- Mokhtar, M.; Liu, X.; Howe, J. Multi-agent Gaussian Adaptive Resonance Theory Map for building energy control and thermal comfort management of UCLan’s WestLakes Samuel Lindow Building. Energy Build. 2014, 80, 504–516. [Google Scholar] [CrossRef]
- Pombeiro, H.; Santos, R.; Carreira, P.; Silva, C.; Sousa, J.M.C. Comparative assessment of low-complexity models to predict electricity consumption in an institutional building: Linear regression vs. fuzzy modeling vs. neural networks. Energy Build. 2017, 146, 141–151. [Google Scholar] [CrossRef]
- Shaker, H.R.; Lazarova-Molnar, S. A new data-driven controllability measure with application in intelligent buildings. Energy Build. 2017, 138, 526–529. [Google Scholar] [CrossRef]
- Yoganathan, D.; Kondepudi, S.; Kalluri, B.; Manthapuri, S. Optimal sensor placement strategy for office buildings using clustering algorithms. Energy Build. 2018, 158, 1206–1225. [Google Scholar] [CrossRef]
- Georgievski, I.; Nguyen, T.A.; Nizamic, F.; Setz, B.; Lazovik, A.; Aiello, M. Planning meets activity recognition: Service coordination for intelligent buildings. Pervasive Mob. Comput. 2017, 38, 110–139. [Google Scholar] [CrossRef]
- Chou, J.-S.; Truong, N.-S. Cloud forecasting system for monitoring and alerting of energy use by home appliances. Appl. Energy 2019, 249, 166–177. [Google Scholar] [CrossRef]
- Peng, Y.; Nagy, Z.; Schlüter, A. Temperature-preference learning with neural networks for occupant-centric building indoor climate controls. Build. Environ. 2019, 154, 296–308. [Google Scholar] [CrossRef]
- Li, R.; Zhang, X.; Liu, L.; Li, Y.; Xu, Q. Application of neural network to building environmental prediction and control. Build. Serv. Eng. Res. Technol. 2019, 41, 25–45. [Google Scholar] [CrossRef]
- Aftab, M.; Chen, C.; Chau, C.-K.; Rahwan, T. Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 2017, 154, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Mofidi, F.; Akbari, H. Integrated optimization of energy costs and occupants’ productivity in commercial buildings. Energy Build. 2016, 129, 247–260. [Google Scholar] [CrossRef]
- Park, S.-y.; Cho, S.; Ahn, J. Improving the quality of building spaces that are planned mainly on loads rather than residents: Human comfort and energy savings for warehouses. Energy Build. 2018, 178, 38–48. [Google Scholar] [CrossRef]
- Luzi, M.; Vaccarini, M.; Lemma, M. A tuning methodology of Model Predictive Control design for energy efficient building thermal control. J. Build. Eng. 2019, 21, 28–36. [Google Scholar] [CrossRef]
- Whiffen, T.R.; Naylor, S.; Hill, J.; Smith, L.; Callan, P.A.; Gillott, M.; Wood, C.J.; Riffat, S.B. A concept review of power line communication in building energy management systems for the small to medium sized non-domestic built environment. Renew. Sustain. Energy Rev. 2016, 64, 618–633. [Google Scholar] [CrossRef]
- Ahn, J.; Cho, S. Development of an intelligent building controller to mitigate indoor thermal dissatisfaction and peak energy demands in a district heating system. Build. Environ. 2017, 124, 57–68. [Google Scholar] [CrossRef]
- Ahn, J.; Chung, D.H.; Cho, S. Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model. Energy 2018, 151, 11–25. [Google Scholar] [CrossRef]
- Latif, M.; Nasir, A. Decentralized stochastic control for building energy and comfort management. J. Build. Eng. 2019, 24, 100739. [Google Scholar] [CrossRef]
- Homod, R.Z. Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings. Renew. Energy 2018, 126, 49–64. [Google Scholar] [CrossRef]
- Li, W.; Koo, C.; Cha, S.H.; Lai, J.H.K.; Lee, J. A conceptual framework for the real-time monitoring and diagnostic system for the optimal operation of smart building: A case study in Hotel ICON of Hong Kong. Energy Procedia 2019, 158, 3107–3112. [Google Scholar] [CrossRef]
- Cociorva, S.; Iftene, A. Indoor Air Quality Evaluation in Intelligent Building. Energy Procedia 2017, 112, 261–268. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S.; Underwood, J. A BIM-Oriented Model for supporting indoor navigation requirements. Comput. Environ. Urban Syst. 2013, 41, 112–123. [Google Scholar] [CrossRef]
- Moreno-Cano, M.V.; Zamora-Izquierdo, M.A.; Santa, J.; Skarmeta, A.F. An indoor localization system based on artificial neural networks and particle filters applied to intelligent buildings. Neurocomputing 2013, 122, 116–125. [Google Scholar] [CrossRef]
- Panchalingam, R.; Chan, K.C. A state-of-the-art review on artificial intelligence for Smart Buildings. Intell. Build. Int. 2019, 1–24. [Google Scholar] [CrossRef]
- Atis, S.; Ekren, N. Development of an outdoor lighting control system using expert system. Energy Build. 2016, 130, 773–786. [Google Scholar] [CrossRef]
- Yaseen, S.; Al-Habaibeh, A.; Su, D.; Otham, F. Real-time crowd density mapping using a novel sensory fusion model of infrared and visual systems. Saf. Sci. 2013, 57, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Pertzborn, A. Using distributed agents to optimize thermal energy storage. J. Energy Storage 2019, 23, 89–97. [Google Scholar] [CrossRef]
- Howard, B.; Acha, S.; Shah, N.; Polak, J. Implicit Sensing of Building Occupancy Count with Information and Communication Technology Data Sets. Build. Environ. 2019, 157, 297–308. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhao, R.; Yang, H. Micro-sources design of an intelligent building integrated with micro-grid. Energy Build. 2013, 57, 261–267. [Google Scholar] [CrossRef]
- Aduda, K.O.; Zeiler, W.; Boxem, G.; Labeodan, T. On Defining Information and Communication Technology Requirements and Associated Challenges for ‘Energy and Comfort Active’ Buildings. Procedia Comput. Sci. 2014, 32, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, Y.; He, B.-J.; Xu, W.; Jin, G.; Zhang, X. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345. [Google Scholar] [CrossRef]
- Clements-Croome, D. Sustainable intelligent buildings for people: A review. Intell. Build. Int. 2011, 3, 67–86. [Google Scholar]
- Wong, J.K.W.; Leung, J.; Skitmore, M.; Buys, L. Technical requirements of age-friendly smart home technologies in high-rise residential buildings: A system intelligence analytical approach. Autom. Constr. 2017, 73, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Bonino, D.; Corno, F. Modeling, simulation and emulation of Intelligent Domotic Environments. Autom. Constr. 2011, 20, 967–981. [Google Scholar] [CrossRef] [Green Version]
- Böke, J.; Knaack, U.; Hemmerling, M. Automated adaptive façade functions in practice—Case studies on office buildings. Autom. Constr. 2020, 113, 103113. [Google Scholar] [CrossRef]
- Luna-Navarro, A.; Loonen, R.; Juaristi, M.; Monge-Barrio, A.; Attia, S.; Overend, M. Occupant-Facade interaction: A review and classification scheme. Build. Environ. 2020, 177, 106880. [Google Scholar] [CrossRef] [Green Version]
- Ghadamian, H.; Ghadimi, M.; Shakouri, M.; Moghadasi, M.; Moghadasi, M. Analytical solution for energy modeling of double skin façades building. Energy Build. 2012, 50, 158–165. [Google Scholar] [CrossRef]
- Egolf, P.W.; Amacker, N.; Gottschalk, G.; Courret, G.; Noume, A.; Hutter, K. A translucent honeycomb solar collector and thermal storage module for building façades. Int. J. Heat Mass Transf. 2018, 127, 781–795. [Google Scholar] [CrossRef]
- Lei, Y.; Rao, Y.; Wu, J.; Lin, C.-H. BIM based cyber-physical systems for intelligent disaster prevention. J. Ind. Inf. Integr. 2020, 20, 100171. [Google Scholar] [CrossRef]
- Xu, J.; Lu, W.; Xue, F.; Chen, K. ‘Cognitive facility management’: Definition, system architecture, and example scenario. Autom. Constr. 2019, 107, 102922. [Google Scholar] [CrossRef]
- López, J.; Pérez, D.; Paz, E.; Santana, A. WatchBot: A building maintenance and surveillance system based on autonomous robots. Robot. Auton. Syst. 2013, 61, 1559–1571. [Google Scholar] [CrossRef]
- Oliveira-Lima, J.A.; Morais, R.; Martins, J.F.; Florea, A.; Lima, C. Load forecast on intelligent buildings based on temporary occupancy monitoring. Energy Build. 2016, 116, 512–521. [Google Scholar] [CrossRef]
- Ritter, A. Smart Materials in Architecture, Interior Architecture and Design; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- Fox, M.A.; Yeh, B.P. Intelligent Kinetic Systems in Architecture. In Managing Interactions in Smart Environments; Nixon, P., Lacey, G., Dobson, S., Eds.; Springer: London, UK, 2000; pp. 91–103. [Google Scholar]
- Schroeter, R.; Foth, M. Discussions in space. In Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7, Melbourne, Australia, 23–27 November 2009; Association for Computing Machinery: Melbourne, Australia, 2009; pp. 381–384. [Google Scholar]
- Choi, J.H.; Seeburger, J. Sapporo world window Urban interaction through public and private screens. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; pp. 508–512. [Google Scholar]
- Fischer, P.T.; Hornecker, E. Urban HCI: Spatial aspects in the design of shared encounters for media facades. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; Association for Computing Machinery: Austin, TX, USA, 2012; pp. 307–316. [Google Scholar]
- Behrens, M.; Valkanova, N.; Schieck, A.F.G.; Brumby, D.P. Smart Citizen Sentiment Dashboard: A Case Study Into Media Architectural Interfaces. In Proceedings of the International Symposium on Pervasive Displays, Copenhagen, Denmark, 3–4 June 2014; Association for Computing Machinery: Copenhagen, Denmark, 2014; pp. 19–24. [Google Scholar]
- Ludwig, T.; Kotthaus, C.; Reuter, C.; Dongen, S.V.; Pipek, V. Situated crowdsourcing during disasters: Managing the tasks of spontaneous volunteers through public displays. Int. J. Human Comput. Stud. 2017, 102, 103–121. [Google Scholar] [CrossRef]
- Ludvigsen, M. Designing for social use in public places–A conceptual framework of social interaction. In Proceedings of the 2005 International Conference on Designing Pleasurable Products and Interfaces (DPPI 2005), Eindhoven, The Netherlands, 24–27 October 2005; pp. 389–408. [Google Scholar]
- Milgram, P.; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, 77, 1321–1329. [Google Scholar]
- Ascott, R. Behaviourables and Futuribles. Control 1969, 5, 1–3. [Google Scholar]
- Kolarevic, B. Architecture in the Digital Age: Design and Manufacturing; Taylor & Francis: Milton Park, UK, 2004. [Google Scholar]
- Ranieri, C.M.; MacLeod, S.; Dragone, M.; Vargas, P.A.; Romero Roseli, A.F. Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors. Sensors 2021, 21, 768. [Google Scholar] [CrossRef] [PubMed]
- Lévy, P. From social computing to reflexive collective intelligence: The IEML research program. Inf. Sci. 2010, 180, 71–94. [Google Scholar] [CrossRef]
Dataset (Subject) | Number of Articles | Top Three Dominant Journals (Number of Articles) |
---|---|---|
Responsive Architecture | 25 | Architectural Science Review (4), International Journal of Architectural Computing (4), Automation in Construction (2), Frontiers of Architectural Research (2) |
Kinetic Architecture | 14 | International Journal of Architectural Computing (2), International Journal of Space Structure (2), Mechanics Based Design of Structures and Machines (2) |
Adaptive Architecture | 14 | No dominant journal |
Intelligent Building | 173 | Energy and Buildings (30), Intelligent Buildings International (23), Automation in Construction (9), Building and Environment (9) |
Key Behavior | Featured IBs | Featured CBs |
---|---|---|
Climate-responsive behavior | Mechatronic behaviors, Origami-based behavior | Automated control behavior, Environmental sensing behavior, Self-organizing behavior |
Biomimetic behavior | Self-actuating behavior, Material-dependent behavior, Hygroscopic behavior, Evolutionary behavior | - |
Structural adaptive behavior | Mechatronic behaviors, Origami-based behavior, Translational motion behavior | Self-organizing behavior, Self-learning behavior, Environmental sensing behavior |
Energy-optimizing behavior | Energy efficiency or saving behavior, HVAC and lighting behavior | Intelligent control behavior, Smart sensing behavior, Self-learning behavior |
Comfort-ensuring behavior | Thermal comfort behavior, Visual comfort behavior, Adaptive comfort behavior | Intelligent control behavior, Smart sensing behavior, Self-learning behavior |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Ostwald, M.J.; Kim, M.J. Characterizing Smart Environments as Interactive and Collective Platforms: A Review of the Key Behaviors of Responsive Architecture. Sensors 2021, 21, 3417. https://doi.org/10.3390/s21103417
Lee JH, Ostwald MJ, Kim MJ. Characterizing Smart Environments as Interactive and Collective Platforms: A Review of the Key Behaviors of Responsive Architecture. Sensors. 2021; 21(10):3417. https://doi.org/10.3390/s21103417
Chicago/Turabian StyleLee, Ju Hyun, Michael J. Ostwald, and Mi Jeong Kim. 2021. "Characterizing Smart Environments as Interactive and Collective Platforms: A Review of the Key Behaviors of Responsive Architecture" Sensors 21, no. 10: 3417. https://doi.org/10.3390/s21103417
APA StyleLee, J. H., Ostwald, M. J., & Kim, M. J. (2021). Characterizing Smart Environments as Interactive and Collective Platforms: A Review of the Key Behaviors of Responsive Architecture. Sensors, 21(10), 3417. https://doi.org/10.3390/s21103417