Design of Metamaterial Based Efficient Wireless Power Transfer System Utilizing Antenna Topology for Wearable Devices
Abstract
:1. Introduction
2. Design of Wearable Wireless Power Transfer System
2.1. Construction of the Wearable Receiving (Rx) and Transmitting (Tx) Antennas
2.2. Design of Wearable WPT Link
3. Metamaterial Integrated Proposed Wearable WPT System
4. Misalignment and Bending Analysis of the Proposed MTM Integrated System
4.1. Misalignment Analysis
4.2. Bending Analysis
5. Analysis of Specific Absorption Rate (SAR)
6. Measurement and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, M.; Estève, D.; Fourniols, J.-Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Soh, P.J.; Vandenbosch, G.A.E.; Mercuri, M.; Schreurs, D.M.M.-P. Wearable wireless health monitoring. IEEE Microw. Mag. 2015, 16, 55–70. [Google Scholar]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A survey of wearable devices and challenges. IEEE Comm. Sur. Tutor. 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Chu, B.; Burnett, W.; Chung, J.W.; Bao, Z. Bring on the body NET. Nature 2017, 549, 328–330. [Google Scholar] [CrossRef]
- Tesla, N. Apparatus for transmitting electrical energy. U.S. Patent US1119732A, 1 December 1914. [Google Scholar]
- Song, M.; Belov, P.; Kapitanova, P. Wireless power transfer inspired by the modern trends in electromagnetics. Appl. Phys. Rev. 2017, 4, 021102. [Google Scholar] [CrossRef]
- Hui, S.Y. Planar wireless charging technology for portable electronic products and Qi. Proc. IEEE 2013, 101, 1290–1301. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Shin, S.; Kim, Y.; Ahn, S.; Lee, S.; Jung, G.; Jeon, S.J.; Cho, D.H. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [Google Scholar] [CrossRef]
- Agarwal, K.; Jegadeesan, R.; Guo, Y.X.; Thakor, N.V. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev. Biomed. Eng. 2017, 10, 136–161. [Google Scholar] [CrossRef]
- Kang, S.H.; Choi, J.H.; Harackiewicz, F.J.; Jung, C.W. Magnetic resonant three-coil wpt system between off/in-body for remote energy harvest. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 741–743. [Google Scholar] [CrossRef]
- Kang, S.H.; Jung, C.W. Textile resonators with thin copper wire for wearable MR-WPT system. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 91–93. [Google Scholar] [CrossRef]
- Lazarus, N.; Bedair, S.S. Improved power transfer to wearable systems through stretchable magnetic composites. Appl. Phys. A 2016, 122, 1–7. [Google Scholar] [CrossRef]
- Jeong, M.J.; Yun, T.; Baek, J.J.; Kim, Y.T. Wireless power transmission using a resonant coil consisting of conductive yarn for wearable devices. Text. Res. J. 2016, 86, 1543–1548. [Google Scholar] [CrossRef]
- Heo, E.; Choi, K.; Kim, J.; Park, J.; Lee, H. A wearable textile antenna for wireless power transfer by magnetic resonance. Text. Res. J. 2017, 88, 1–9. [Google Scholar] [CrossRef]
- Bao, K.; Zekios, C.L.; Georgakopoulos, S.V. A wearable WPT system on flexible substrates. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 931–935. [Google Scholar] [CrossRef]
- Wagih, M.; Komolafe, A.; Zaghari, B. Dual-receiver wearable 6.78 MHz resonant inductive wireless power transfer glove using embroidered textile coils. IEEE Access 2020, 8, 24630–24642. [Google Scholar] [CrossRef]
- Kurs, A.; Moffatt, R.; Soljacic, M. Simultaneous mid-range power transfer to multiple devices. Appl. Phys. Lett. 2010, 96, 044102. [Google Scholar] [CrossRef]
- DeLong, B.J.; Kiourti, A.; Volakis, J.L. A radiating near-field patch rectenna for wireless power transfer to medical implants at 2.4 GHz. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 64–69. [Google Scholar] [CrossRef]
- Gowda, V.R.; Yurduseven, O.; Lipworth, G.; Zupan, T.; Reynolds, M.S.; Smith, D.R. Wireless power transfer in the radiative near field. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1865–1868. [Google Scholar] [CrossRef]
- Das, R.; Yoo, H. A multiband antenna associating wireless monitoring and nonleaky wireless power transfer system for biomedical implants. IEEE Trans. Microw. Theory Tech. 2017, 65, 2485–2495. [Google Scholar] [CrossRef]
- Shaw, T.; Mitra, D. Metasurface-based radiative near-field wireless power transfer system for implantable medical devices. IET Microw. Antennas Propag. 2019, 13, 1974–1982. [Google Scholar] [CrossRef]
- Shaw, T.; Samanta, G.; Mitra, D. Efficient wireless power transfer system for implantable medical devices using circular polarized antennas. IEEE Trans. Antennas Propag. 2020. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, J.; Chang, T.; Liu, X. A miniaturized four-element MIMO antenna with EBG for implantable medical devices. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 226–233. [Google Scholar] [CrossRef]
- The “Nello Carrara” Institute of Applied Physics (IFAC). Available online: http://niremf.ifac.cnr.it/tissprop/htmlclie/uniquery.php?func=atsffun&freq=2450000000&tiss=&outform=disphtm&tisname=on&frequen=on&conduct=on&permitt=on&losstan=on&wavelen=on&pendept=on&freq1=2450000000&tissue2=Air&frqbeg=10&frqend=100e9&linstep=100&mode=log&logstep=5&tissue3=SkinWet&freq3=1000000 (accessed on 12 January 2021).
- Shaw, T.; Bhattacharjee, D.; Mitra, D. Gain enhancement of slot antenna using zero-index metamaterial superstrate. Int. J. RF Microw. Comput. Aided Eng. 2017, 27, 1–10. [Google Scholar] [CrossRef]
- Szabo, Z.; Park, G.-H.; Hedge, R.; Li, E.-P. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship. IEEE Trans. Microw. Theory Tech. 2010, 58, 2646–2653. [Google Scholar] [CrossRef]
- Saenz, E.; Gonzalo, R.; Ederra, I.; Vardaxoglou, J.C.; de Maagt, P. Resonant meta-surface superstrate for single and multi-frequency dipole antenna arrays. IEEE Trans. Antennas Propag. 2008, 56, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.; Lau, R.; Gabriel, C. The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [Green Version]
- Hosain, M.K.; Kouzani, A.Z.; Tye, S.J.; Abulseoud, O.A.; Amiet, A.; Galehdar, A.; Kaynak, A.; Berk, M. Development of a compact rectenna for wireless powering of a head-mountable deep brain stimulation device. IEEE J. Trans. Eng. Health Med. 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.-J.; Alfadhl, Y.; Chen, X.; Parini, C.; Wen, D. Conductivity and frequency dependent specific absorption rate. J. Appl. Phys. 2013, 113, 074902. [Google Scholar] [CrossRef]
- IEEE Standards Coordinating Committee. C95.1-1991—IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1999. Available online: https://ieeexplore.ieee.org/document/159488 (accessed on 15 May 2021).
- Liu, C.; Guo, Y.X.; Sun, H.; Xiao, S. Design and safety considerations of an implantable rectenna for far-field wireless power transfer. IEEE Trans. Antennas Propag. 2014, 62, 5798–5806. [Google Scholar] [CrossRef]
- Islam, M.T.; Faruque, M.R.; Misran, N. Reduction of specific absorption rate (SAR) in the human head with ferrite material and metamaterial. Prog. Electromagn. Res. 2009, 9, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Kwak, I.S.; Sim, D.U.; Kwon, J.H.; Yoon, Y.J. Design of PIFA with metamaterials for body-SAR reduction in wearable applications. IEEE Trans. Electromagn. Comp. 2016, 59, 297–300. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Z.; Wu, J.; Bao, J.; Liu, J.; Cai, L.; Dang, T.; Zheng, H.; Li, E. Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network. IEEE Trans. Antennas Propag. 2018, 66, 3076–3086. [Google Scholar] [CrossRef]
- Yalduz, H.; Koç, B.; Kuzu, L.; Turkmen, M. An ultra-wide band low-SAR flexible metasurface-enabled antenna for WBAN applications. Appl. Phys. A 2019, 125, 1–11. [Google Scholar] [CrossRef]
Tissue Model (Thickness) | Relative Permittivity (εr) | Conductivity, σ (S/m) |
---|---|---|
Skin (1.5 mm) | 38.0 | 1.46 |
Fat (10.5 mm) | 5.28 | 0.104 |
Muscle (40 mm) | 52.73 | 1.74 |
Lr = Wr | Rr | W1 | W2 | Wfr |
---|---|---|---|---|
70 mm | 28.2 mm | 13 mm | 0.5 mm | 3.7 mm |
d (mm) | Operating Frequency (GHz) | |S11| (dB) | Gain (dBi) |
---|---|---|---|
0 (On Body) | 2.45 | −33.71 | 1.86 |
1 | 2.45 | −33.16 | 1.87 |
2 | 2.45 | −32.81 | 1.89 |
3 | 2.45 | −31.60 | 1.92 |
You | Rt | L1 | L2 | Wft |
---|---|---|---|---|
90 mm | 24.4 mm | 19.3 mm | 0.3 mm | 4.88 mm |
Array Combination | Frequency (GHz) | |S11| (dB) | |S21| (dB) | Increment |∆S21| (dB) |
---|---|---|---|---|
3 × 3 | 2.46 | −20.86 | −6.26 | 2.88 |
4 × 4 | 2.45 | −16.03 | −8.16 | 0.38 |
6 × 6 | 2.44 | −14.47 | −8.35 | 0.19 |
d2 (mm) | Frequency (GHz) | |S11| (dB) | |S21| (dB) | Increment |∆S21| (dB) |
---|---|---|---|---|
6 | 2.43 | −17.01 | −6.36 | 2.18 |
8 | 2.46 | −20.86 | −6.26 | 2.88 |
10 | 2.42 | −16.47 | −6.98 | 1.56 |
Wearable Environment | MTM Slab Loading | Operating Frequency (GHz) | |S11| (dB) | |S21| (dB) | Efficiency (%) | Efficiency Improvement (%) |
---|---|---|---|---|---|---|
Three-layer Tissue Model | W/O MTM | 2.44 | −31.12 | −8.54 | 13.94 | - |
With MTM | 2.46 | −20.86 | −6.26 | 23.66 | 9.72 | |
Human Hand | W/O MTM | 2.41 | −17.16 | −9.10 | 12.30 | - |
With MTM | 2.42 | −31.54 | −6.51 | 22.34 | 11.04 | |
Human Head | W/O MTM | 2.32 | −18.24 | −12.64 | 5.45 | - |
With MTM | 2.36 | −19.17 | −7.44 | 18.03 | 12.58 | |
Human Torso | W/O MTM | 2.30 | −22.19 | −14.36 | 3.67 | - |
With MTM | 2.33 | −19.36 | −8.74 | 13.37 | 9.7 |
La (mm) | 0 | 10 | 20 | 30 |
---|---|---|---|---|
Frequency (GHz) | 2.46 | 2.41 | 2.44 | 2.43 |
|S21| (dB) | −6.26 | −6.85 | −6.89 | −7.38 |
θr (degree) | 0 | 10 | 20 | 30 |
---|---|---|---|---|
Frequency (GHz) | 2.46 | 2.43 | 2.42 | 2.45 |
|S21| (dB) | −6.26 | −6.69 | −7.79 | −7.89 |
Measured Environment | MTM Slab Loading | Operating Frequency (GHz) | |S11| (dB) | |S21| (dB) | Efficiency (%) | Efficiency Improvement (%) |
---|---|---|---|---|---|---|
Pork Slab | W/O MTM | 2.47 | −22.65 | −8.78 | 13.24 | - |
With MTM | 2.42 | −17.20 | −6.41 | 22.86 | 9.62 | |
Hand | W/O MTM | 2.45 | −16.82 | −9.87 | 10.30 | - |
With MTM | 2.41 | −25.487 | −7.01 | 19.91 | 9.61 | |
Head | W/O MTM | 2.44 | −18.36 | −13.20 | 4.78 | - |
With MTM | 2.40 | −23.24 | −8.13 | 15.38 | 10.60 | |
Body (Chest) | W/O MTM | 2.41 | −15.28 | −15.12 | 3.07 | - |
With MTM | 2.38 | −18.70 | −9.48 | 11.27 | 8.20 |
Ref. | Size of the Rx (mm × mm × mm) | Operating Frequency | Flexibility of Rx | Design Complexity of Rx | Transfer Distance (mm) | Efficiency (%) | Application Scenario |
---|---|---|---|---|---|---|---|
[10] | 90 × 90 × 1.5 | 6.78 MHz | Yes | Low | 60 | 29.4 | Muscle model |
[13] | 14.5 MHz | No | High | 20 | 45 | Arm model | |
[14] | 120 × 80 × 0.787 | 6.78 MHz | Yes | High | 150 | 46.2 | Human body model |
[15] | 80 MHz | Both flexible and rigid | Moderate | 60 | 50 | Human hand model | |
[16] | 60 × 60 × 0.266 | 6.78 MHz | Yes | High | 10 | 64 | Human hand model |
This work | 70 × 70 × 1 | 2.46 GHz | Yes | Low | 60 | 23.66 (Sim.) 22.86 (Meas.) Pork slab | Human hand, head and body |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, T.; Samanta, G.; Mitra, D.; Mandal, B.; Augustine, R. Design of Metamaterial Based Efficient Wireless Power Transfer System Utilizing Antenna Topology for Wearable Devices. Sensors 2021, 21, 3448. https://doi.org/10.3390/s21103448
Shaw T, Samanta G, Mitra D, Mandal B, Augustine R. Design of Metamaterial Based Efficient Wireless Power Transfer System Utilizing Antenna Topology for Wearable Devices. Sensors. 2021; 21(10):3448. https://doi.org/10.3390/s21103448
Chicago/Turabian StyleShaw, Tarakeswar, Gopinath Samanta, Debasis Mitra, Bappaditya Mandal, and Robin Augustine. 2021. "Design of Metamaterial Based Efficient Wireless Power Transfer System Utilizing Antenna Topology for Wearable Devices" Sensors 21, no. 10: 3448. https://doi.org/10.3390/s21103448
APA StyleShaw, T., Samanta, G., Mitra, D., Mandal, B., & Augustine, R. (2021). Design of Metamaterial Based Efficient Wireless Power Transfer System Utilizing Antenna Topology for Wearable Devices. Sensors, 21(10), 3448. https://doi.org/10.3390/s21103448