Validation of Rayleigh Wave Theoretical Formulation with Single-Station Rotational Records of Mine Tremors in Lower Silesian Copper Basin
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Rayleigh Wave Mathematical form Assessment
3.2. Field Measured Rotation in the Function of Seismic Energy Emitted
4. Discussion
5. Conclusions
- the wave’s dominant frequency,
- the wave’s propagation velocity in local conditions, e.g., in the mining areas of Polish copper mines and
- attenuation of the rotational component of seismic waves in near- and far-wave fields.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahm, T.; Cesca, S.; Hainzl, S.; Braun, T.; Krüger, F. Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters. J. Geophys. Res. Solid Earth 2015, 120, 2491–2509. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.D.; Mueller, C.S.; Moschetti, M.P.; Hoover, S.M.; Rubinstein, J.L.; Llenos, A.L.; Michael, A.J.; Ellsworth, W.L.; McGarr, A.F.; Holland, A.A.; et al. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model—Results of 2014 workshop and sensitivity studies. US Geol. Surv. Open-File Rep. 2015, 1070. [Google Scholar] [CrossRef]
- Albano, M.; Barba, S.; Tarabusi, G.; Saroli, M.; Stramondo, S. Discriminating between natural and anthropogenic earthquakes: Insights from the Emilia Romagna (Italy) 2012 seismic sequence. Sci. Rep. 2017, 7, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanou, I. Controlling anthropogenic and natural seismicity: Insights from active stabilization of the spring-slider model. J. Geophys. Res. Solid Earth 2019, 124, 8786–8802. [Google Scholar] [CrossRef] [Green Version]
- McGarr, A.; Simpson, D.; Seeber, L. Case histories of induced and triggered seismicity. In International Handbook of Earthquake and Engineering Seismology-International Geophysics Series; Lee, W.H., Jennings, P., Kisslinger, C., Kanamori, H., Eds.; Academic Press: Amsterdam, The Netherlands, 2002; pp. 647–664. [Google Scholar]
- Nicol, A.; Carne, R.; Gerstenberger, M.; Christophersen, A. Induced seismicity and its implications for CO2 storage risk. Energy Procedia 2011, 4, 3699–3706. [Google Scholar] [CrossRef] [Green Version]
- Mazaira, A.; Konicek, P. Intense rockburst impacts in deep underground construction and their prevention. Can. Geotech. J. 2015, 52, 1426–1439. [Google Scholar] [CrossRef]
- Ilieva, M.; Rudziński, Ł.; Pawłuszek-Filipiak, K.; Lizurek, G.; Kudłacik, I.; Tondaś, D.; Olszewska, D. Combined Study of a Significant Mine Collapse Based on Seismological and Geodetic Data—29 January 2019, Rudna Mine, Poland. Remote Sens. 2020, 12, 1570. [Google Scholar] [CrossRef]
- Bourne, S.J.; Oates, S.J.; Van Elk, J.; Doornhof, D. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir. J. Geophys. Res. Solid Earth 2014, 119, 8991–9015. [Google Scholar] [CrossRef]
- McGarr, A. Maximum magnitude earthquakes induced by fluid injection. J. Geophys. Res. Solid Earth 2014, 119, 1008–1019. [Google Scholar] [CrossRef]
- McGarr, A.; Bekins, B.; Burkardt, N.; Dewey, J.; Earle, P.; Ellsworth, W.; Ge, S.; Hickman, S.; Holland, A.; Majer, E.; et al. Coping with earthquakes induced by fluid injection. Science 2015, 347, 830–831. [Google Scholar] [CrossRef]
- Ruiz-Barajas, S.; Santoyo, M.A.; Oterino, M.B.; Alvarado, G.E.; Climent, A. Stress transfer patterns and local seismicity related to reservoir water-level variations. A case study in central Costa Rica. Sci. Rep. 2019, 9, 5600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranowski, P.; Damaziak, K.; Mazurkiewicz, Ł.; Mertuszka, P.; Pytel, W.; Małachowski, J.; Pałac-Walko, B.; Jones, T. Destress Blasting of Rock Mass: Multiscale Modelling and Simulation. Shock Vib. 2019, 2878969, 1070–9622. [Google Scholar] [CrossRef] [Green Version]
- Guha, S.K. Underground Nuclear Explosion Related Seismicity. In Induced Earthquakes; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Baisch, S.; Vörös, R.; Rothert, E.; Stang, H.; Jung, R.; Schellschmidt, R. A numerical model for fluid injection induced seismicity at Soultz-sous-Forêts. Int. J. Rock Mech. Min. Sci. 2010, 47, 405–413. [Google Scholar] [CrossRef]
- Castañeda, J.; Bustamante, T.; Perez, F.; Romanel, C. A Seismic Hazard Assessment for a Tailing Dam Site in Minas Gerais—Brazil. In Proceedings of the 13th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013; pp. 1762–1767. [Google Scholar] [CrossRef]
- Agurto-Detzel, H.; Bianchi, M.; Assumpção, M.; Schimmel, M.; Collaço, B.; Ciardelli, C.; Barbosa, J.R.; Calhau, J. The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic 253 sequence. Geophys. Res. Lett. 2016, 43, 4929–4936. [Google Scholar] [CrossRef] [Green Version]
- Fuławka, K.; Mertuszka, P.; Pytel, W. Monitoring of the stability of underground workings in Polish copper mines conditions. E3S Web Conf. 2018, 29, 8. [Google Scholar] [CrossRef] [Green Version]
- Fuławka, K.; Pytel, W.; Mertuszka, P. The effect of selected rockburst prevention measures on seismic activity—Case study from the Rudna copper mine. J. Sustain. Min. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Lasocki, S.; Orlecka-Sikora, B.; Mutke, G.; Pytel, W.; Rudziński, Ł.; Markowski, P.; Piasecki, P. A catastrophic event in Rudna copper-ore mine in Poland on 29 November, 2016: What, how and why. In Proceedings of the 9th International Symposium on Rockbursts and Seismicity in Mines, Santiago, Chile, 15–17 November 2017; Vallejos, J.A., Ed.; pp. 316–324. [Google Scholar]
- Caputa, A.; Rudziński, Ł. Source Analysis of Post-Blasting Events Recorded in Deep Copper Mine, Poland. Pure Appl. Geophys. 2019, 176, 3451–3466. [Google Scholar] [CrossRef] [Green Version]
- Owen, J.R.; Kemp, D.; Lèbre, É.; Svobodova, K.; Murillo, P.G. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Disaster Risk Reduct. 2020, 42, 1–10. [Google Scholar] [CrossRef]
- Duque, J.F.M.; Zapico, I.; Oyarzun, R.; García, J.A.L.; Cubas, P. A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: New insights and environmental implications from SE Spain. Geomorphology 2015, 239, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gobla, G. Risk analysis for evaluation of mine impounded water. Annu. Conf. Expo. Soc. Min. Metall. Explor. 2017, 1, 561–564. [Google Scholar]
- International Commission On Large Dams, The World Register of Dams. Available online: https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp (accessed on 1 March 2021).
- Azam, S.; Li, Q. Tailings Dam Failures: A Review of the Last One Hundred Years. Geotechnical News, 2010. Available online: http://ksmproject.com/wp-content/uploads/2017/08/Tailings-Dam-Failures-Last-100-years-Azam2010.pdf(accessed on 15 February 2021).
- Trifunac, M.D. A note on rotational components of earthquake motions on ground surface for incident body waves. Int. J. Soil Dyn. Earthq. Eng. 1982, 1, 11–19. [Google Scholar] [CrossRef]
- Lee, W.H.K.; Celebi, M.; Todorovska, M.; Igel, H. Introduction to the Special Issue on Rotational Seismology and Engineering Applications. Bull. Seismol. Soc. Am. 2009, 99, 945–957. [Google Scholar] [CrossRef]
- Lee, W.H.K.; Evans, J.R.; Huang, B.-S.; Hutt, C.R.; Lin, C.-J.; Liu, C.-C.; Nigbor, R.L. Measuring Rotatonal Ground Motions in Seismological Practice; Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2011; pp. 1–27. [Google Scholar]
- Jaroszewicz, L.R.; Kurzych, A.; Krajewski, Z.; Kowalski, J.K.; Kowalski, H.A.; Teisseyre, K.P. Innovative Fibre-Optic Rotational Seismograph. Proceedings 2019, 15, 45. [Google Scholar] [CrossRef] [Green Version]
- Nigbor, R.L.; Evans, J.R.; Hutt, C.R. Laboratory and field testing of commercial rotational seismometers. Bull. Seismol. Soc. Am. 2009, 99, 1215–1227. [Google Scholar] [CrossRef] [Green Version]
- Bernauer, F.; Wassermann, J.; Igel, H. Rotational sensors—A comparison of different sensor types. J. Seismol. 2012, 16, 595–602. [Google Scholar] [CrossRef]
- Brokešová, J.; Málek, J.; Kolínský, P. Rotaphone, a mechanical seismic sensor system for field rotation rate measurements and its in situ calibration. J. Sesimol. 2012, 16, 603–621. [Google Scholar] [CrossRef]
- Brokešová, J.; Málek, J. Six-degree-of-freedom near-source seismic motions II: Examples of real seismogram analysis and S-wave velocity retrieval. J. Seismol. 2015, 19, 511–539. [Google Scholar] [CrossRef]
- Brokešová, J.; Málek, J.; Evans, J.R. Rotaphone-D—A new six-degree-of freedom short-period seismic sensor: Features, parameters, field records. In Proceedings of the 4th International Working Group on Rotational Seismology Meeting, Tutzing, Germany, 20–23 June 2016. [Google Scholar]
- Jaroszewicz, L.R.; Kurzych, A.; Krajewski, Z.; Marć, P.; Kowalski, J.K.; Bobra, P.; Zembaty, Z.; Sakowicz, B.; Jankowski, R. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications. Sensors 2016, 16, 2161. [Google Scholar] [CrossRef] [Green Version]
- Newmark, N.M. Effects of earthquakes on dams and embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Sarma, S.K. Seismic stability of earth dams and embankments. Geotechnique 1975, 25, 743–761. [Google Scholar] [CrossRef]
- USGS-Geologic Hazards: Demonstration of the Newmark Analysis Algorithm. Available online: http://pubs.usgs.gov/of/1998/ofr-98-113/figure2.html (accessed on 15 February 2021).
- Fuławka, K.; Pytel, W.; Mertuszka, P.; Koziarz, E. Preliminary measurements of rotational components of seismic vibration in the Legnica-Głogów Copper Basin region. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2019, 109, 185–198. [Google Scholar] [CrossRef]
- Pytel, W.; Fuławka, K.; Mertuszka, P.; Szumny, M.; Koziarz, E. Amplitude and Frequency Characteristics of Rotational Ground Motions Generated by Paraseismic Events. In Proceedings of the 19th International Multidisciplinary Scientific Geoconference SGEM 2019 Conference Proceedings, Albena, Bulgaria, 28 June–7 July 2019; Science and Technologies in Geology, Exploration and Mining, Bulgarian Academy of Science: Sofia, Bulgaria, 2019; Volume 19, pp. 31–38. [Google Scholar] [CrossRef]
- Fuławka, K.; Pytel, W.; Pałac-Walko, B. Near-Field Measurement of Six Degrees of Freedom Mining-Induced Tremors in Lower Silesian Copper Basin. Sensors 2020, 20, 6801. [Google Scholar] [CrossRef] [PubMed]
- Kolsky, H. Stress Waves in Solids; Dover Publications, Inc.: New York, NY, USA, 1963. [Google Scholar]
- Fung, Y.C. Foundations of Solid Mechanics; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1965. [Google Scholar]
- Maranò, S.; Fäh, D. Processing of translational and rotational motions of surface waves: Performance analysis and applications to single sensor and to array measurements. Geophys. J. Int. 2013, 196, 317–339. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Simonelli, A.; Lin, C.J.; Bernauer, F.; Donner, S.; Braun, T.; Wassermann, J.; Igel, H. Six Degree-of-Freedom Broadband Ground-Motion Observations with Portable Sensors: Validation, LocalEarthquakes, and Signal Processing. Bull. Seismol. Soc. Am. 2020, 110, 953–969. [Google Scholar] [CrossRef]
- Sollberger, D.; Igel, H.; Schmelzbach, C.; Edme, P.; van Manen, D.-J.; Bernauer, F.; Yuan, S.; Wassermann, J.; Schreiber, U.; Robertsson, J.O.A. Seismological Processing of Six Degree-of-Freedom Ground-Motion Data. Sensors 2020, 20, 6904. [Google Scholar] [CrossRef]
- Achenbach, J.D. Wave Propagation in Elastic Solids; North-Holland Publishing, Co.: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Sollberger, D.; Igel, H.; Schmelzbach, C.; Bernauer, F.; Yuan, S.; Wassermann, J.; Gebauer, A.; Schreiber, U.; Robertsson, J. Towards Field Data Applications of Six-Component Polarization Analysis; EGU General Assembly: Lund, Sweden, 2020; p. 16191. [Google Scholar]
- Press, F. Seismic Velocities. In Handbook of Physical Constants—Revised Edition; The Geological Society of America Memoir: Boulder, CO, USA, 1966; Chapter 9; Volume 97. [Google Scholar]
- PN-81/B-03020–Grunty budowlane. Posadowienie bezpośrednie budowli. In Obliczenia Statyczne i Projektowanie; Wydawnictwa Normalizacyjne: Warsaw, Poland, 1981. [Google Scholar]
- Czarny, R.; Pilecki, Z.; Drzewińska, S. The application of seismic interferometry for estimating a 1D S-wave velocity model with the use of mining induced seismicity. J. Sustain. Min. 2018, 17, 209–214. [Google Scholar] [CrossRef]
- Butra, J. Copper Ore Exploitation in Roof Fall and Rock Bursts Hazard Conditions; KGHM Cuprum Editor: Wrocław, Poland, 2010. [Google Scholar]
No. | Date | Domin. Frequency [Hz] | Energy [J] | Distance to Hypocenter [m] | The Maximum Absolute Value of Rotation [mrad] | ||
---|---|---|---|---|---|---|---|
RX | RY | RZ | |||||
1 | 2019-01-12 | 2.4 | 1.1 × 107 | 6372 | 1.8 × 10−3 | 2.9 × 10−3 | 1.7 × 10−3 |
2 | 2019-01-29 | 6.0 | 3.1 × 108 | 4446 | 6.9 × 10−3 | 1.0 × 10−2 | 5.6 × 10−3 |
3 | 2019-07-04 | 10 | 9.7 × 105 | 5722 | 2.4 × 10−4 | 8.8 × 10−5 | 6.0 × 10−6 |
Type of Material | [m/s] | [m/s] |
---|---|---|
Aluvium, river sediments | 500–2100 | |
Clays | 1100–2500 | |
Sands | 200–2000 | |
Glacial deposits | 400–1700 | |
Sandstones | 1400–4500 | |
Shales | 2300–4700 | |
Limestone soft, coherent, recristallized | 1700–4200; 2800–6400; 5700–6400 | |
Dolomite | 3500–6900 | |
Granite, Granodiorite | 4600–6000 | 2800–3200 |
Diabase | 5800–6000 | |
Gabro | 6400–6700 | 3400–3600 |
Basalt | 5400–6400 | 2700–3200 |
Metamorfic shales | 4200–4900 | 2500–3200 |
Gneisses | 3500–7500 | 3300–3700 |
Water | 1450 | - |
Air | 335 | - |
Noncohesive Soils | Cohesive Soils | ||||||
Type of soil | Gravel | Coarse and medium sands | Fine and dusty sands | Consolidated moraine loams | Other cohesive consolidated soils and non-consolidated moraine cohesive soils | Other non-consolidated cohesive soils | Clay |
Poisson’s ratio | 0.20 | 0.25 | 0.30 | 0.25 | 0.29 | 0.32 | 0.37 |
Ratio κ1 | 0.9110 | 0.9194 | 0.9274 | 0.9194 | 0.9258 | 0.9305 | 0.9380 |
SULPHATE ROCKS | CARBONATE ROCKS | SANDSTONES | |||||
Type of rocks | Massive anhydrite | Gypsum-anhydrite | Dolomitic limestone | Calcareous Dolomites | Dolomites | Quartz with a carbonate binder | Quartz with a clay binder |
Poisson’s ratio | 0.26 | 0.21 | 0.24 | 0.25 | 0.23 | 0.20 | 0.13 |
Ratio κ1 | 0.9210 | 0.9127 | 0.9178 | 0.9194 | 0.9161 | 0.9110 | 0.8986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pytel, W.; Fuławka, K.; Mertuszka, P.; Pałac-Walko, B. Validation of Rayleigh Wave Theoretical Formulation with Single-Station Rotational Records of Mine Tremors in Lower Silesian Copper Basin. Sensors 2021, 21, 3566. https://doi.org/10.3390/s21103566
Pytel W, Fuławka K, Mertuszka P, Pałac-Walko B. Validation of Rayleigh Wave Theoretical Formulation with Single-Station Rotational Records of Mine Tremors in Lower Silesian Copper Basin. Sensors. 2021; 21(10):3566. https://doi.org/10.3390/s21103566
Chicago/Turabian StylePytel, Witold, Krzysztof Fuławka, Piotr Mertuszka, and Bogumiła Pałac-Walko. 2021. "Validation of Rayleigh Wave Theoretical Formulation with Single-Station Rotational Records of Mine Tremors in Lower Silesian Copper Basin" Sensors 21, no. 10: 3566. https://doi.org/10.3390/s21103566
APA StylePytel, W., Fuławka, K., Mertuszka, P., & Pałac-Walko, B. (2021). Validation of Rayleigh Wave Theoretical Formulation with Single-Station Rotational Records of Mine Tremors in Lower Silesian Copper Basin. Sensors, 21(10), 3566. https://doi.org/10.3390/s21103566