Performance Analysis of Underlay Cognitive Radio System with Self-Sustainable Relay and Statistical CSI
Abstract
:1. Introduction
1.1. Related Work
1.2. Summary and Organization
2. System and Channel Models
2.1. Time-Switching Relaying Protocol for Energy Harvesting
2.2. Power-Splitting Relaying Protocol for Energy Harvesting
3. Outage Probability Analysis
4. Simulation Method and Numerical Results
4.1. Simulation Environment
4.2. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Hu, F.; Chen, B.; Zhu, K. Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access 2018, 6, 15754–15776. [Google Scholar] [CrossRef]
- Khan, A.A.; Rehmani, M.H.; Rachedi, A. Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wirel. Commun. 2017, 24, 17–25. [Google Scholar] [CrossRef]
- Goldsmith, A.; Jafar, S.A.; Maric, I.; Srinivasa, S. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proc. IEEE 2009, 97, 894–914. [Google Scholar] [CrossRef]
- Ghasemi, A.; Sousa, E.S. Fundamental limits of spectrum sharing in fading environments. IEEE Trans. Wirel. Commun. 2007, 6, 649–658. [Google Scholar] [CrossRef]
- Musavian, L.; Aissa, S. Capacity and power allocation for spectrum sharing communications in fading channels. IEEE Trans. Wirel. Commun. 2009, 8, 148–156. [Google Scholar] [CrossRef]
- Suraweera, H.A.; Smith, P.J.; Shafi, M. Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans. Veh. Technol. 2010, 59, 1811–1822. [Google Scholar] [CrossRef] [Green Version]
- Jarrouj, J.; Blagojevic, V.; Ivanis, P. Outage probability of SINR for underlay cognitive radio systems in Nakagami fading. Frequenz 2014, 68, 563–572. [Google Scholar] [CrossRef]
- Kim, H.; Wang, H.; Lim, S.; Hong, D. On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments. IEEE Trans. Wirel. Commun. 2012, 11, 284–295. [Google Scholar] [CrossRef]
- Lim, S.; Wang, H.; Kim, H.; Hong, D. Mean Value-Based Power Allocation without Instantaneous CSI Feedback in Spectrum Sharing Systems. IEEE Trans. Wirel. Commun. 2012, 11, 874–879. [Google Scholar] [CrossRef]
- Jarrouj, J.; Blagojevic, V.; Ivanis, P. Outage Probability and Ergodic Capacity of Spectrum-Sharing Systems with MRC Diversity. Frequenz 2016, 70, 157–171. [Google Scholar] [CrossRef]
- Guan, X.; Yang, W.; Cai, Y. Outage Performance of Statistical CSI Assisted Cognitive Relay with Interference from Primary User. IEEE Commun. Lett. 2013, 17, 1416–1419. [Google Scholar] [CrossRef]
- Kabiri, C.; Zepernick, H.; Tran, H. Outage probability of a cognitive cooperative relay network with multiple primary users under primary outage constraint. In Proceedings of the 2016 International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 12–14 October 2016; pp. 38–42. [Google Scholar] [CrossRef]
- Lee, D. Performance analysis of scheduled STBC using statistical CSI under multiple interferers with different power in CR-MIMO systems. Phys. Commun. 2018, 27, 125–132. [Google Scholar] [CrossRef]
- Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. Energy Harvesting Wireless Communications: A Review of Recent Advances. IEEE J. Sel. Areas Commun. 2015, 33, 360–381. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, F. Potential Ambient Energy-Harvesting Sources and Techniques. J. Technol. Stud. 2009, 35, 40–48. [Google Scholar] [CrossRef]
- Paing, T.; Shin, J.; Zane, R.; Popovic, Z. Resistor emulation approach to low-power RF energy harvesting. IEEE Trans. Power Electron. 2008, 23, 1494–1501. [Google Scholar] [CrossRef]
- Powercast-Overview-rf-Energy-Harvesting-and-Wireless-Power-for-Micropower-Applications-1-728/. Available online: https://www.powercastco.com/company/about/ (accessed on 10 August 2020).
- Lee, K.; Ko, J. RF-Based Energy Transfer Through Packets: Still a Dream? or a Dream Come True? IEEE Access 2019, 7, 163840–163850. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Ning, Z.; Gharavi, H. Wireless power transfer and energy harvesting: Current status and future prospects. IEEE Wirel. Commun. 2019, 26, 163–169. [Google Scholar] [CrossRef]
- Doan, T.X.; Hoang, T.M.; Duon, T.Q.; Ngo, H.Q. Energy Harvesting-Based D2D Communications in the Presence of Interference and Ambient RF Sources. IEEE Access 2017, 5, 5224–5234. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kim, H.; Hong, D. Cognitive radio networks with energy harvesting. IEEE Trans. Wirel. Commun. 2013, 12, 1386–1397. [Google Scholar] [CrossRef]
- Lee, S.; Zhang, R.; Huang, K. Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 2013, 12, 4788–4799. [Google Scholar] [CrossRef] [Green Version]
- Blagojevic, V.M.; Cvetkovic, A.M.; Ivanis, P. Performance analysis of energy harvesting DF relay system in generalized-K fading environment. Phys. Commun. 2018, 28, 190–200. [Google Scholar] [CrossRef]
- Gu, Y.; Aissa, S. RF-Based Energy Harvesting in Decode-and-Forward Relaying Systems: Ergodic and Outage Capacities. IEEE Trans. Wirel. Commun. 2015, 14, 6425–6434. [Google Scholar] [CrossRef]
- Yang, S.; Lu, G.; Ren, Y. Optimal power allocation and relay location for DF energy harvesting relaying sensor networks. Sensors 2019, 19, 2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Gao, H.; Zhou, C.; Duan, R.; Zhou, X. Resource allocation in cognitive radio wireless sensor networks with energy harvesting. Sensors 2019, 19, 5115. [Google Scholar] [CrossRef] [Green Version]
- Cvetkovic, A.; Blagojevic, V.; Ivanis, P. Performance Analysis of Nonlinear Energy-Harvesting DF Relay System in Interference-Limited Nakagami-m Fading Environment. ETRI J. 2017, 39, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Jing, T.; Huo, Y.; Jiang, K. Outage probability minimization for energy harvesting cognitive radio sensor networks. Sensors 2017, 17, 224. [Google Scholar] [CrossRef]
- Toan, H.; Bao, V.; Le, K. Performance analysis of cognitive underlay two-way relay networks with interference and imperfect channel state information. EURASIP J. Wirel. Commun. Netw. 2018, 53. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.; Dhar Roy, S.; Kundu, S. Performance of cognitive relay network with energy harvesting relay under imperfect CSI. Int. J. Commun. Syst. 2018, 31, e3549. [Google Scholar] [CrossRef]
- Hoang, T.M.; Van, N.L.; Nguyen, B.C.; Dung, L.T. On the performance of energy harvesting non-orthogonal multiple access relaying system with imperfect channel state information over Rayleigh fading channels. Sensors 2019, 19, 3327. [Google Scholar] [CrossRef] [Green Version]
- Nasir, A.; Zhou, X.; Durrani, S.; Kennedy, R. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 2013, 12, 3622–3636. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.; Yeoh, P.L.; Bao, V.N.Q.; Elkashlan, M.; Yang, N. Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Process. Lett. 2012, 19, 741–744. [Google Scholar] [CrossRef]
- Liu, Y.; Mousavifar, S.A.; Deng, Y.; Leung, C.; Elkashlan, M. Wireless Energy Harvesting in a Cognitive Relay Network. IEEE Trans. Wirel. Commun. 2016, 15, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Yang, Y.; Sharif, H. Distributed MIMO technologies in cooperative wireless networks. IEEE Commun. Mag. 2011, 49, 78–82. [Google Scholar] [CrossRef]
- Khalifeh, A.; Abid, H.; Darabkh, K.A. Optimal Cluster Head Positioning Algorithm for Wireless Sensor Networks. Sensors 2020, 20, 3719. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Washington, DC, USA, 1972; Volume 55, p. 319. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 5th ed.; Academic Press Inc.: San Diego, CA, USA, 1994. [Google Scholar]
- Zheng, Y.R.; Xiao, C. Simulation models with correct statistical properties for Rayleigh fading channels. IEEE Trans. Commun. 2003, 51, 920–928. [Google Scholar] [CrossRef]
- Jeruchim, M.C.; Balaban, P.; Shanmugam, K.S. Simulation of Communication Systems; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wang, S.; Xia, M.; Huang, K.; Wu, Y. Wirelessly Powered Two-Way Communication with Nonlinear Energy Harvesting Model: Rate Regions Under Fixed and Mobile Relay. IEEE Trans. Wirel. Commun. 2017, 16, 8190–8204. [Google Scholar] [CrossRef]
- Papoulis, A. Probability, Random Variables, and Stochastic Processes; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
Parameter | Figure 4 | Figure 5 | Figure 6 | Figure 7 | Figure 8 | Figure 9 |
---|---|---|---|---|---|---|
Pout,PU | 0.01–0.1 | 0.05 | 0.05 | 0.05 | 0.01–0.1 | 0.05 |
Qp [dB] | −20–20 | 10 | 5–15 | 10 | −15–20 | −15–20 |
0.1–2 | 0.1–1 | 1 | 1 | 1 | 1 | |
0.01 | 0.1–10 | 1 | 1 | 1 | 1 | |
ΩIR [dB] | 0 | 0 | 0 | −10–0 | 0 | 0 |
ΩID [dB] | −10 | −10 | −10 | −10–0 | −10 | −10 |
ΩSR [dB] | 10 | −10–20 | 10 | −10–30 | 10 | 10 |
ΩRD [dB] | 10 | −10–20 | 10 | −10–30 | 10 | 10 |
γth [dB] | −5 | 8 | 8 | 8 | 8 | 8 |
η | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
α | 0.5 | 0.5 | 0.01–0.99 | 0.5 | 0.2 | 0.5 |
ρ | 0.5 | 0.5 | 0.01–0.99 | 0.5 | 0.2 | 0.5 |
N | 1 | 1 | 1–2 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozić, N.; Blagojević, V.; Ivaniš, P. Performance Analysis of Underlay Cognitive Radio System with Self-Sustainable Relay and Statistical CSI. Sensors 2021, 21, 3727. https://doi.org/10.3390/s21113727
Kozić N, Blagojević V, Ivaniš P. Performance Analysis of Underlay Cognitive Radio System with Self-Sustainable Relay and Statistical CSI. Sensors. 2021; 21(11):3727. https://doi.org/10.3390/s21113727
Chicago/Turabian StyleKozić, Nadica, Vesna Blagojević, and Predrag Ivaniš. 2021. "Performance Analysis of Underlay Cognitive Radio System with Self-Sustainable Relay and Statistical CSI" Sensors 21, no. 11: 3727. https://doi.org/10.3390/s21113727
APA StyleKozić, N., Blagojević, V., & Ivaniš, P. (2021). Performance Analysis of Underlay Cognitive Radio System with Self-Sustainable Relay and Statistical CSI. Sensors, 21(11), 3727. https://doi.org/10.3390/s21113727