Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Sampling Design
2.2. Laboratory Analysis
2.3. Sensors
2.4. Regression Analysis
2.5. Model Tuning and Validation
3. Results
3.1. Results of Chemical and Spectral Data Analysis
3.2. Predicting Total Carbon Content
3.3. Predicting Total Nitrogen Content
4. Discussion
4.1. Feasibility of MEMS-Spectrometer for Forest Soil C and N Content Estimation
4.2. Comparison to Other Studies
4.3. Relevance for Forest Soil Monitoring
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIR | near-infrared range of the electromagnetic spectrum |
vis | visual range of the electromagnetic spectrum |
MEMS | microelectro mechanical system |
BZE | National Forest Soil Inventory |
SOC | Soil organic carbon |
clhs | Conditioned Latin hypercube sampling |
SG | Savitzky - Golay Filter |
SNV | Standard Normal Variate |
PLSR | Partial Least Square Regression |
RPD | Ratio of Performance to Deviation |
Appendix A. Supplementary Data
References
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; Sousa, P.; Trigo, R.; García-Herrera, R.; Ramos, A. The exceptional Iberian heatwave of summer 2018. Bull. Am. Meteorol. Soc. 2020, 101, S29–S34. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Fan, L.; Wigneron, J.; Weber, U.; Reichstein, M.; Fu, Z.; et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 2020, 6, eaba2724. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Zhiqiang, Y.; Sebald, J.; Knorn, J.; Neumann, M.; Hostert, P.; Seidl, R. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Ma, Z.; Lei, X.; Zhu, Q.; Chen, H.; Wang, W.; Liu, S.; Li, W.; Fang, X.; Zhou, X. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 2011, 1, 467–471. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread increase of tree mortality rates in the western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Gessler, A.; Schaub, M.; McDowell, N.G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 2017, 214, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Olness, A.; Archer, D. Effect of organic carbon on available water in soil. Soil Sci. 2005, 170, 90–101. [Google Scholar] [CrossRef]
- Grüneberg, E.; Riek, W.; Schöning, I.; Evers, J.; Hartmann, P.; Ziche, D. Das Kohlenstoffspeicher-vermögen von Waldböden. AFZ Wald 2017, 72, 23–25. [Google Scholar]
- Rossel, R.V.; Adamchuk, V.; Sudduth, K.; McKenzie, N.; Lobsey, C. Proximal soil sensing: An effective approach for soil measurements in space and time. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 113, pp. 243–291. [Google Scholar]
- Terhoeven-Urselmans, T.; Michel, K.; Helfrich, M.; Flessa, H.; Ludwig, B. Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 2006, 169, 168–174. [Google Scholar] [CrossRef]
- Rossel, R.V.; Walvoort, D.; McBratney, A.; Janik, L.J.; Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Kuang, B.; Mouazen, A. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. Eur. J. Soil Sci. 2011, 62, 629–636. [Google Scholar] [CrossRef]
- Reeves, J.; McCarty, G.; Meisinger, J. Near infrared reflectance spectroscopy for the analysis of agricultural soils. J. Infrared Spectrosc. 1999, 7, 179–193. [Google Scholar] [CrossRef]
- Rossel, R.V.; Webster, R. Predicting soil properties from the Australian soil visible–near infrared spectroscopic database. Eur. J. Soil Sci. 2012, 63, 848–860. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, F.; Chabrillat, S.; Chartin, C.; Genot, V.; Jones, A.; van Wesemael, B. Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database. Eur. J. Soil Sci. 2018, 69, 592–603. [Google Scholar] [CrossRef]
- Sudduth, K.; Hummel, J. Geographic operating range evaluation of a NIR soil sensor. Trans. ASAE 1996, 39, 1599–1604. [Google Scholar] [CrossRef]
- Wetterlind, J.; Stenberg, B. Near-infrared spectroscopy for within-field soil characterization: Small local calibrations compared with national libraries spiked with local samples. Eur. J. Soil Sci. 2010, 61, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Chodak, M.; Khanna, P.; Horvath, B.; Beese, F. Near infrared spectroscopy for determination of total and exchangeable cations in geologically heterogeneous forest soils. J. Infrared Spectrosc. 2004, 12, 315–324. [Google Scholar] [CrossRef]
- Ludwig, B.; Khanna, P.; Bauhus, J.; Hopmans, P. Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manag. 2002, 171, 121–132. [Google Scholar] [CrossRef]
- Xu, D.; Ma, W.; Chen, S.; Jiang, Q.; He, K.; Shi, Z. Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy. Comput. Electron. Agric. 2018, 144, 1–8. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Jin, X.; Yang, Z.; Liu, H. Predicting Soil Organic Carbon and Soil Nitrogen Stocks in Topsoil of Forest Ecosystems in Northeastern China Using Remote Sensing Data. Remote Sens. 2020, 12, 1115. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Jones, E.; Minasny, B. Evaluating low-cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia. Geoderma Reg. 2020, 20, e00240. [Google Scholar] [CrossRef]
- Sharififar, A.; Singh, K.; Jones, E.; Ginting, F.I.; Minasny, B. Evaluating a low-cost portable NIR spectrometer for the prediction of soil organic and total carbon using different calibration models. Soil Use Manag. 2019, 35, 607–616. [Google Scholar] [CrossRef]
- Ng, W.; Anggria, L.; Siregar, A.F.; Hartatik, W.; Sulaeman, Y.; Jones, E.; Minasny, B. Developing a soil spectral library using a low-cost NIR spectrometer for precision fertilization in Indonesia. Geoderma Reg. 2020, 22, e00319. [Google Scholar] [CrossRef]
- Wellbrock, N.; Grüneberg, E.; Ziche, D.; Eickenscheidt, N.; Holzhausen, M.; Höhle, J.; Gemballa, R.; Andreae, H. Entwicklung einer Methodik zur stichprobengestützten Erfassung und Regionalisierung von Zustandseigenschaften der Waldstandorte; Thünen Report 36; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2015. [Google Scholar] [CrossRef]
- Wellbrock, N.; Ahrends, B.; Bögelein, R.; Bolte, A.; Eickenscheidt, N.; Grüneberg, E.; König, N.; Schmitz, A.; Fleck, S.; Ziche, D. Concept and Methodology of the National Forest Soil Inventory. In Status and Dynamics of Forests in Germany; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–28. [Google Scholar]
- European Union. Copernicus Land Monitoring Service 2018, European Environment Agency (EEA). Available online: https://land.copernicus.eu/ (accessed on 1 February 2021).
- Wellbrock, N. Arbeitsanleitung für die zweite bundesweite Bodenzustandserhebung im Wald:(BZE II); Arbeitsanleitung für die Außenaufnahmen; Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz: Berlin, Germany, 2006. [Google Scholar]
- Gutachterausschuss Forstliche Analytik. Handbuch Forstliche Analytik. Eine Loseblatt-Sammlung der Analysemethoden im Forstbereich. 2014. Available online: https://www.nw-fva.de/fileadmin/user_upload/Verwaltung/Publikationen/2009/Handbuch_Forstliche_Analytik_HFA_komplettinclErgaenzung4_2009.pdf (accessed on 1 February 2021).
- DIN. DIN 10694: Bestimmung des organischen Kohlenstoffgehaltes und des Gesamtkohlenstoffgehaltes nach trockener Verbrennung (Elementaranalyse). In Deutsche Normen; Beuth Verlag: Berlin, Germany, 1994. [Google Scholar]
- Mac Arthur, A.; MacLellan, C.J.; Malthus, T. The fields of view and directional response functions of two field spectroradiometers. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3892–3907. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Stevens, A.; Ramirez-Lopez, L. An Introduction to the Prospectr Package. R package version 0.2.1. 2020. Available online: https://cran.r-project.org/web/packages/prospectr/index.html (accessed on 13 June 2019).
- Barnes, R.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Avian Technologies. Fluorilon Gray Scale Standards & Targets. 2019. Available online: https://aviantechnologies.com/product/gray-scale-standards/ (accessed on 13 June 2019).
- Ramirez-Lopez, L.; Behrens, T.; Schmidt, K.; Stevens, A.; Demattê, J.A.M.; Scholten, T. The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets. Geoderma 2013, 195, 268–279. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. In Matrix Pencils; Springer: Berlin/Heidelberg, Germany, 1983; pp. 286–293. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992; Volume 92, pp. 343–348. [Google Scholar]
- Morellos, A.; Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Im, J.; Jensen, J.R.; Coleman, M.; Nelson, E. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto Int. 2009, 24, 293–312. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Small, C.; Tappert, M.; Quideau, S.A.; Drozdowski, B.; Underwood, A.; Janz, A. Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy. Can. J. Soil Sci. 2017, 97, 241–248. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-81. 2018. Available online: https://topepo.github.io/caret/ (accessed on 13 June 2019).
- Chang, C.W.; Laird, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 2002, 167, 110–116. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Rossel, R.A.V.; Boruvka, L.; Klement, A. Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma 2020, 357, 113972. [Google Scholar] [CrossRef]
- Lee, K.; Lee, D.; Sudduth, K.; Chung, S.; Kitchen, N.; Drummond, S. Wavelength identification and diffuse reflectance estimation for surface and profile soil properties. Trans. ASABE 2009, 52, 683–695. [Google Scholar] [CrossRef]
- Grunwald, S.; Congrong, Y.; Xiong, X. Transferability and scalability of soil total carbon prediction models in Florida, USA. Pedosphere 2018, 28, 856–872. [Google Scholar] [CrossRef]
- Seidel, M.; Hutengs, C.; Ludwig, B.; Thiele-Bruhn, S.; Vohland, M. Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs. local calibrations. Geoderma 2019, 354, 113856. [Google Scholar] [CrossRef]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 107, pp. 163–215. [Google Scholar]
- Knadel, M.; Thomsen, A.; Schelde, K.; Greve, M.H. Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform. Comput. Electron. Agric. 2015, 114, 134–144. [Google Scholar] [CrossRef]
- Knadel, M.; Deng, F.; Alinejadian, A.; Wollesen de Jonge, L.; Moldrup, P.; Greve, M.H. The effects of moisture conditions—from wet to hyper dry—on visible near-infrared spectra of Danish reference soils. Soil Sci. Soc. Am. J. 2014, 78, 422–433. [Google Scholar] [CrossRef]
- Liski, J.; Perruchoud, D.; Karjalainen, T. Increasing carbon stocks in the forest soils of western Europe. For. Ecol. Manag. 2002, 169, 159–175. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.; Ding, J.; Zhao, X.; Ma, W.; Ji, C.; Fang, J. Increased topsoil carbon stock across China’s forests. Glob. Chang. Biol. 2014, 20, 2687–2696. [Google Scholar] [CrossRef] [PubMed]
Device | Veris Spectrophotometer | NeoSpec SWS62231 | Hamamatsu C12880MA |
---|---|---|---|
Wavelength | 400–2220 nm | 1350–2550 nm | 340–850 nm |
Spectral Resolution | 6 nm @ 350–1000 nm, 5 nm @ 1100–2220 nm | 16 nm | 15 nm |
SNR | 300:1 @ 400–1000 nm, NA @ 1100–2220 nm | 2000:1 | NA |
Wavelength reproducibility | NA @ 350–1000 nm, ±0.4 @ 1100–2000 nm | ±0.15 nm | ±0.5 nm |
Weight | 24 kg | 17 g | 5 g |
Data Set | Horizon | Parameter | N | Mean | St. Dev. | Min | Pctl (25) | Pctl (75) | Max |
---|---|---|---|---|---|---|---|---|---|
BZE Saxony | Oh | C [%] | 176 | 27.15 | 8.01 | 8.60 | 21.73 | 32.53 | 49.43 |
N [%] | 176 | 1.22 | 0.38 | 0.32 | 0.96 | 1.53 | 2.08 | ||
Ah | C [%] | 186 | 5.12 | 2.77 | 0.40 | 2.88 | 6.99 | 17.22 | |
N [%] | 186 | 0.23 | 0.15 | 0.02 | 0.11 | 0.31 | 1.06 | ||
Zellwald | Oh | C [%] | 50 | 33.99 | 5.03 | 18.81 | 32.11 | 37.37 | 41.36 |
N [%] | 50 | 1.66 | 0.20 | 1.04 | 1.53 | 1.79 | 2.11 | ||
Ah | C [%] | 60 | 6.43 | 2.14 | 3.16 | 4.86 | 7.81 | 13.88 | |
N [%] | 60 | 0.34 | 0.14 | 0.17 | 0.25 | 0.41 | 1.08 |
Oh Horizon | Ah Horizon | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Algorithm | Sensor | RMSE % | RPIQ | RMSE % | RPIQ | ||
C | Hamamatsu | |||||||
PLSR | Neospectra | 2 | ||||||
Hamamatsu + Neospectra | ||||||||
Veris | ||||||||
Hamamatsu | ||||||||
Cubist | Neospectra | |||||||
Hamamatsu + Neospectra | ||||||||
Veris | ||||||||
N | Hamamatsu | |||||||
PLSR | Neospectra | |||||||
Hamamatsu + Neospectra | ||||||||
Veris | ||||||||
Hamamatsu | ||||||||
Cubist | Neospectra | |||||||
Hamamatsu + Neospectra | ||||||||
Veris |
Parameter | C | N | |||||
---|---|---|---|---|---|---|---|
Algorithm | Sensor | RMSE % | RPIQ | RMSE % | RPIQ | ||
PLSR | Hamamatsu | ||||||
Neospectra | |||||||
Hamamatsu + Neospectra | |||||||
Veris | |||||||
Cubist | Hamamatsu | ||||||
Neospectra | |||||||
Hamamatsu + Neospec | |||||||
Veris |
Parameter | C | N | |||||
---|---|---|---|---|---|---|---|
Algorithm | Sensor | RMSE % | RPIQ | RMSE % | RPIQ | ||
PLSR | Hamamatsu | ||||||
Neospectra | |||||||
Hamamatsu + Neospectra | |||||||
Veris | |||||||
Cubist | Hamamatsu | ||||||
Neospectra | |||||||
Hamamatsu + Neospectra | |||||||
Veris |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, F.; Petzold, R.; Becker, C.; Werban, U. Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction. Sensors 2021, 21, 3927. https://doi.org/10.3390/s21113927
Thomas F, Petzold R, Becker C, Werban U. Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction. Sensors. 2021; 21(11):3927. https://doi.org/10.3390/s21113927
Chicago/Turabian StyleThomas, Felix, Rainer Petzold, Carina Becker, and Ulrike Werban. 2021. "Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction" Sensors 21, no. 11: 3927. https://doi.org/10.3390/s21113927
APA StyleThomas, F., Petzold, R., Becker, C., & Werban, U. (2021). Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction. Sensors, 21(11), 3927. https://doi.org/10.3390/s21113927