Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Acquisition
2.3. Walking Tasks
2.4. Gait Event Detection Algorithms
2.5. Sensor Calibration
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Hodgins, D. The importance of measuring human gait. Med. Device Technol. 2008, 19, 42–44. [Google Scholar] [PubMed]
- Panebianco, G.P.; Bisi, M.C.; Stagni, R.; Fantozzi, S. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture 2018, 66, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Trojaniello, D.; Cereatti, A.; Pelosin, E.; Avanzino, L.; Mirelman, A.; Hausdorff, J.M.; Della Croce, U. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabil. 2014, 11, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.; Dehollain, C.; Blanc, Y.; Burkhard, P.R.; Aminian, K. Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef]
- Greene, B.R.; McGrath, D.; O’Neill, R.; O’Donovan, K.J.; Burns, A.; Caulfield, B. An adaptive gyroscope-based algorithm for temporal gait analysis. Med. Biol. Eng. Comput. 2010, 48, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Esser, P.; Dawes, H.; Collett, J.; Feltham, M.G.; Howells, K. Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Gait Posture 2011, 34, 558–560. [Google Scholar] [CrossRef]
- Jasiewicz, J.M.; Allum, J.H.; Middleton, J.W.; Barriskill, A.; Condie, P.; Purcell, B.; Li, R.C.T. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006, 24, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampp, A.; Barth, J.; Schülein, S.; Gassmann, K.-G.; Klucken, J.; Eskofier, B.M. Inertial sensor-based stride parameter calcu-lation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 2015, 62, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, G.P.; Bisi, M.C.; Stagni, R.; Fantozzi, S. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms. Comput. Methods Programs Biomed. 2020, 197, 105703. [Google Scholar] [CrossRef] [PubMed]
- Catalfamo, P.; Ghoussayni, S.; Ewins, D. Gait Event Detection on Level Ground and Incline Walking Using a Rate Gyroscope. Sensors 2010, 10, 5683–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, A.; Martelloni, C.; Scapellato, S.; Cavallo, F. Assessment of Walking Features from Foot Inertial Sensing. IEEE Trans. Biomed. Eng. 2005, 52, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Storm, F.A.; Buckley, C.J.; Mazzà, C. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods. Gait Posture 2016, 50, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariani, B.; Jiménez, M.C.; Vingerhoets, F.J.; Aminian, K. On-shoe wearable sensors for gait and turning assessment of pa-tients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 2012, 60, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Weygers, I.; Kok, M.; Konings, M.; Hallez, H.; De Vroey, H.; Claeys, K. Inertial Sensor-Based Lower Limb Joint Kinematics: A Methodological Systematic Review. Sensors 2020, 20, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.; Ginis, P.; Hardegger, M.; Casamassima, F.; Rocchi, L.; Chiari, L. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal_newline Gait Parameters. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 764–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef]
- Glaister, B.C.; Bernatz, G.C.; Klute, G.K.; Orendurff, M.S. Video task analysis of turning during activities of daily living. Gait Posture 2007, 25, 289–294. [Google Scholar] [CrossRef]
- Segal, A.D.; Orendurff, M.S.; Czerniecki, J.M.; Shofer, J.B.; Klute, G.K. Local dynamic stability in turning and straight-line gait. J. Biomech. 2008, 41, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Romijnders, R.; Warmerdam, E.; Hansen, C.; Welzel, J.; Schmidt, G.; Maetzler, W. Validation of IMU-based gait event de-tection during curved walking and turning in older adults and Parkinson’s Disease patients. J. Neuroeng. Rehabil. 2021, 18, 28. [Google Scholar] [CrossRef]
- Tong, K.; Granat, M.H. A practical gait analysis system using gyroscopes. Med. Eng. Phys. 1999, 21, 87–94. [Google Scholar] [CrossRef]
- Kong, W.; Sessa, S.; Cosentino, S.; Zecca, M.; Saito, K.; Wang, C.; Imtiaz, U.; Lin, Z.; Bartolomeo, L.; Ishii, H.; et al. Development of a real-time IMU-based motion capture system for gait rehabilitation. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 2100–2105. [Google Scholar]
- Barrois, R.; Gregory, T.; Oudre, L.; Moreau, T.; Truong, C.; Pulini, A.A.; Vienne, A.; Labourdette, C.; Vayatis, N.; Buffat, S.; et al. An Automated Recording Method in Clinical Consultation to Rate the Limp in Lower Limb Osteoarthritis. PLoS ONE 2016, 11, e0164975. [Google Scholar] [CrossRef] [PubMed]
- Niswander, W.; Wang, W.; Kontson, K. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics. Sensors 2020, 20, 5993. [Google Scholar] [CrossRef]
- Laudanski, A.; Brouwer, B.; Li, Q. Measurement of Lower Limb Joint Kinematics using Inertial Sensors During Stair Ascent and Descent in Healthy Older Adults and Stroke Survivors. J. Heal. Eng. 2013, 4, 555–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Valencia, L.S.; Elias, A.; Rocon, E.; Bastos-Filho, T.; Frizera, A. An IMU-to-Body Alignment Method Applied to Human Gait Analysis. Sensors 2016, 16, 2090. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wu, D.; Liu, G.; Zhao, G.; Huang, B.; Wang, L. A low-cost body inertial-sensing network for practical gait discri-mination of hemiplegia patients. Telemed. e-Health 2012, 18, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, S.; Wickström, N. Identification of gait events using expert knowledge and continuous wavelet transform analysis. In Proceedings of the 7th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS 2014), Angers, France, 3–6 March 2014; SciTePress: Setúbal, Portugal, 2014. [Google Scholar]
- Kwakkel, S.; Godha, S.; Lachapelle, G. Foot and Ankle Kinematics during Gait Using Foot Mounted Inertial System. In Proceedings of the 2007 National Technical Meeting of The Institute of Navigation, San Diego, CA, USA, 22–24 January 2007; pp. 1056–1064. [Google Scholar]
- Anwary, A.R.; Yu, H.; Vassallo, M. Optimal Foot Location for Placing Wearable IMU Sensors and Automatic Feature Extraction for Gait Analysis. IEEE Sens. J. 2018, 18, 2555–2567. [Google Scholar] [CrossRef]
- Khan, A.; Biddiss, E. Musical Stairs: A motivational therapy tool for children with disabilities featuring automated de-tection of stair-climbing gait events via inertial sensors. Med Eng. Phys. 2017, 40, 95–102. [Google Scholar] [CrossRef]
- Lau, H.; Tong, K. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 2008, 27, 248–257. [Google Scholar] [CrossRef]
- Rebula, J.R.; Ojeda, L.V.; Adamczyk, P.G.; Kuo, A.D. Measurement of foot placement and its variability with inertial sensors. Gait Posture 2013, 38, 974–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouwanda, D.; Gopalai, A.A.; Khoo, B.H. A Low Cost Alternative to Monitor Human Gait Temporal Parameters–Wearable Wireless Gyroscope. IEEE Sens. J. 2016, 16, 9029–9035. [Google Scholar] [CrossRef]
- Bourgeois, A.B.; Mariani, B.; Aminian, K.; Zambelli, P.Y.; Newman, C.J. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture 2014, 39, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-L.; Chung, P.-C.J.; Wang, W.-H.; Pai, M.-C.; Wang, C.-Y.; Lin, C.-W.; Wu, H.-L.; Wang, J.-S. Gait and Balance Analysis for Patients with Alzheimer’s Disease Using an Inertial-Sensor-Based Wearable Instrument. IEEE J. Biomed. Heal. Inform. 2014, 18, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Tadano, S.; Takeda, R.; Miyagawa, H. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations. Sensors 2013, 13, 9321–9343. [Google Scholar] [CrossRef]
- Scapellato, S.; Cavallo, F.; Martelloni, C.; Sabatini, A.M. In-use calibration of body-mounted gyroscopes for applications in gait analysis. Sens. Actuators A: Phys. 2005, 123–124, 418–422. [Google Scholar] [CrossRef]
- Maqbool, H.F.; Husman, M.A.B.; Awad, M.; Abouhossein, A.; Mehryar, P.; Iqbal, N.; Dehghani-Sanij, A.A. Real-time gait event detection for lower limb amputees using a single wearable sensor. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Allseits, E.; Lučarević, J.; Gailey, R.; Agrawal, V.; Gaunaurd, I.; Bennett, C. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units. J. Biomech. 2017, 55, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Selles, R.; Formanoy, M.; Bussmann, J.; Janssens, P.; Stam, H. Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. Ieee Trans. Neural Syst. Rehabil. Eng. 2005, 13, 81–88. [Google Scholar] [CrossRef]
- Palermo, E.; Rossi, S.; Marini, F.; Patane, F.; Cappa, P. Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Meas 2014, 52, 145–155. [Google Scholar] [CrossRef]
- McCamley, J.; Donati, M.; Grimpampi, E.; Mazzà, C. An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data. Gait Posture 2012, 36, 316–318. [Google Scholar] [CrossRef]
- Bialocerkowski, A.E.; Bragge, P. Measurement error and reliability testing: Application to rehabilitation. Int. J. Rehabil. 2008, 15, 422–427. [Google Scholar] [CrossRef]
- Mahmoud, M.; Pratt, O. Errors in clinical measurement: What and why? J. Anaesth Pract. 2017. Available online: http://japractice.co.uk/2017/08/errors-clinical-measurement/12615 (accessed on 26 June 2020).
- Wright, J.G.; Feinstein, A.R. Improving the reliability of orthopaedic measurements. J. Bone Jt. Surg. Br. 1992, 74, 287–291. [Google Scholar] [CrossRef] [Green Version]
- De Nunzio, A.M.; Grasso, M.; Nardone, A.; Godi, M.; Schieppati, M. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson’s disease. Clin. Neurophysiol. 2010, 121, 240–247. [Google Scholar] [CrossRef] [PubMed]
Segment | Abbreviation | Description | Sources |
---|---|---|---|
Shank | Shin | Shin Bone: hard surface of tibial bone, below the knee and above the thickest part of the calf. | * Xsens recommendation |
MLS | Middle Lateral Shank: lateral shank, halfway between the knee and ankle. | Laudanski 2013 [24], Kong 2013 [21] | |
LLS | Lower Lateral Shank: lateral shank, 5cm above the lateral malleolus. | Panebianco 2018 [2], Vargas-Valencia 2016 [25], Guo 2012 [26], Trojaniello 2014 [3], Khandelwal and Wickström 2014 [27], Storm 2016 [12] | |
Foot | Heel | Adhered to heel on the back of participant’s shoe | Kwakkel 2007 [28], Anwary 2018 [29], Khan 2017 [30], Lau 2008 [31], Rebula 2013 [32], Gouwanda 2016 [33] |
DFoot | Dorsal Foot: under the tongue of the participant’s shoe, approximately over the distal end of the third and fourth metatarsal bones. | Laudanski 2013 [24], Panebianco 2018 [2], Barrois 2016 [22], Var-gas-Valencia 2016 [25], Bourgeois 2014 [34], Guo 2012 [26], Hsu 2014 [35], Tadano 2013 [36], Kong 2013 [21], Scapellato 2005 [37], Kwakkel 2007 [28], Anwary 2018 [29], Jasiewicz 2006 [7], Ferrari 2016 [15], Mariani 2012 [13] |
Straight over Ground Walking | |||||||
---|---|---|---|---|---|---|---|
Stance Time | Algorithm Type | Dorsal Foot | Heel | Lower Lateral Shank | Middle Lateral Shank | Shin Bone | |
(1) Velocity Minima | RMSE Abs Bias | 90.3 | 74.7 | 58.6 | 56.3 | 65.9 | |
87.6(22.1) | 71.7(20.8) | 52.5(26) | 52.8(19.3) | 61(24.9) | |||
(2) Velocity Zero Crossing | RMSE Abs Bias | 61.8 | 64.2 | 87.3 | 92.6 | 90.3 | |
58.5(20) | 60.2(22.1) | 84.9(20.3) | 90.7(18.6) | 88.5(17.7) | |||
(3) SIacc/APacc | RMSE Abs Bias | 40.3 | 206.9 | 58.7 | 51.7 | 51.8 | |
34.4(21) | 190.6(80.6) | 41.5(41.5) | 40.9(31.6) | 45.6(24.5) | |||
(4) MLvel/APacc | RMSE Abs Bias | 50.9 | 221.8 | 28.9 | 22.2 | 40.6 | |
45.7(22.4) | 196.9(102.3) | 22(18.7) | 17.9(13.2) | 32.4(24.5) | |||
(5) APacc/MLvel | RMSE Abs Bias | 40.2 | 47.5 | 74.8 | 69.4 | 48.9 | |
36.8(16.2) | 44.9(15.5) | 62.5(41.0) | 64.0(26.9) | 46.4(15.5) | |||
Obstacle navigation | |||||||
Algorithm Type | Dorsal Foot | Heel | Lower Lateral Shank | Middle Lateral Shank | Shin Bone | ||
(1) Velocity Minima | RMSE Abs Bias | 93.2 | 74.8 | 75.8 | 64.9 | 73.8 | |
90.2(23.7) | 71.8(21) | 68.1(33.3) | 60.6(23.1) | 67.8(29.1) | |||
(2) Velocity Zero Crossing | RMSE Abs Bias | 50.5 | 51.3 | 77.2 | 82.8 | 75.8 | |
47.7(16.6) | 48.3(17.3) | 74.6(19.7) | 80.7(18.5) | 72.2(23.2) | |||
(3) SIacc/APacc | RMSE Abs Bias | 48.5 | 214.5 | 87.9 | 54.9 | 53.1 | |
41.2(25.7) | 194.0(91.5) | 60.6(63.6) | 43.7(33.2) | 41.7(32.9) | |||
(4) MLvel/APacc | RMSE Abs Bias | 55.0 | 245.6 | 79.9 | 28.4 | 39.2 | |
50.0(22.8) | 224.4(99.8) | 46.0(65.4) | 22.1(17.8) | 32.2(22.4) | |||
(5) APacc/MLvel | RMSE Abs Bias | 35.7 | 44.1 | 60.3 | 70.2 | 45.8 | |
32.4(14.8) | 41.6(14.8) | 47.6(37.1) | 64.3(28.1) | 42.7(16.6) |
Straight over Ground Walking | |||||||
---|---|---|---|---|---|---|---|
Swing Time | Algorithm Type | Dorsal Foot | Heel | Lower Lateral Shank | Middle Lateral Shank | Shin Bone | |
(1) Velocity Minima | RMSE Abs Bias | 93.1 | 72.4 | 60.0 | 53.7 | 61.4 | |
91.3(18.1) | 69.5(20.4) | 51.9(30.1) | 50.9(17.1) | 57.6(21.5) | |||
(2) Velocity Zero Crossing | RMSE Abs Bias | 62.0 | 64.3 | 87.5 | 92.7 | 90.2 | |
59.5(17.6) | 60.9(20.5) | 85.5(18.6) | 91.3(16) | 88.9(15.3) | |||
(3) SIacc/APacc | RMSE Abs Bias | 43.5 | 207.8 | 50.9 | 50.0 | 52.9 | |
36.4(23.9) | 191.5(80.6) | 35.2(36.8) | 40.6(29.2) | 47.8(22.7) | |||
(4) MLvel/APacc | RMSE Abs Bias | 51.2 | 219.5 | 30.0 | 23.7 | 36.3 | |
46.3(22) | 195.9(99.0) | 23.3(19.0) | 18.9(14.3) | 28.9(21.9) | |||
(5) APacc/MLvel | RMSE Abs Bias | 37.8 | 49.5 | 70.6 | 75.7 | 52.4 | |
34.8(14.7) | 47.3(14.4) | 58.3(39.7) | 70.0(28.9) | 50.2(14.9) | |||
Obstacle navigation | |||||||
Algorithm Type | Dorsal Foot | Heel | Lower Lateral Shank | Middle Lateral Shank | Shin Bone | ||
(1) Velocity Minima | RMSE Abs Bias | 90.4 | 75.0 | 65.0 | 59.2 | 65.0 | |
87.4(23) | 72.0(21.1) | 57.6(30.1) | 55.3(21.1) | 60.5(23.9) | |||
(2) Velocity Zero Crossing | RMSE Abs Bias | 56.5 | 56.9 | 82.7 | 87.9 | 81.7 | |
53.5(18) | 53.7(19.1) | 80.5(19.1) | 86.3(17) | 78.8(21.7) | |||
(3) SIacc/APacc | RMSE Abs Bias | 43.7 | 206.8 | 81.1 | 55.0 | 50.7 | |
36.5(24.2) | 187.2(87.9) | 57.3(57.4) | 41.5(36.0) | 41.8(28.6) | |||
(4) MLvel/APacc | RMSE Abs Bias | 53.6 | 244.3 | 74.2 | 31.0 | 40.8 | |
48.2(23.4) | 223.1(99.4) | 43.0(60.4) | 24.6(18.9) | 34.3(22.1) | |||
(5) APacc/MLvel | RMSE Abs Bias | 39.3 | 45.2 | 75.6 | 74.4 | 46.5 | |
35.6(16.6) | 43.3(13.2) | 64.5(39.4) | 69.2(27.2) | 44.6(13.2) |
Straight over Ground Walking | |||||||
---|---|---|---|---|---|---|---|
Stride Time | Algorithm Type | Dorsal Foot | Heel | Lower Lateral Shank | Middle Lateral Shank | Shin Bone | |
(1) Velocity Minima | RMSE Abs Bias | 17.2 | 9.2 | 28.3 | 12.1 | 15.7 | |
11.5(12.8) | 7.2(5.6) | 18.6(21.4) | 9.4(7.6) | 10.7(11.5) | |||
(2) Velocity Zero Crossing | RMSE Abs Bias | 12.3 | 12.4 | 12.6 | 12.8 | 12.8 | |
9.7(7.5) | 9.9(7.5) | 10.1(7.6) | 10.2(7.7) | 10.2(7.6) | |||
(3) SIacc/APacc | RMSE Abs Bias | 35.0 | 33.6 | 45.5 | 53.3 | 28.0 | |
21.8(27.4) | 23.3(24.2) | 29.6(34.6) | 40.6(34.6) | 21.4(18.1) | |||
(4) MLvel/APacc | RMSE Abs Bias | 14.8 | 13.4 | 11.7 | 10.7 | 34.6 | |
10.5(10.5) | 9.8(9.1) | 9.4(6.9) | 8.8(6.1) | 24.9(24.1) | |||
(5) APacc/MLvel | RMSE Abs Bias | 29.1 | 20.1 | 70.4 | 52.9 | 52.3 | |
18.6(22.4) | 11.0(16.8) | 51.9(47.5) | 33.3(41.0) | 33.7(40.0) | |||
Obstacle navigation | |||||||
Algorithm Type | Dorsal Foot | Heel | Lower Lateral Shank | Middle Lateral Shank | Shin Bone | ||
(1) Velocity Minima | RMSE Abs Bias | 19.5 | 9.4 | 33.3 | 15.5 | 21.6 | |
11.9(15.4) | 5.6(7.5) | 22.0(25.0) | 10.5(11.4) | 13.1(17.2) | |||
(2) Velocity Zero Crossing | RMSE Abs Bias | 15 | 14.3 | 15 | 14.8 | 15.2 | |
11.2(10) | 10.4(9.8) | 11.3(9.9) | 11.1(9.8) | 11.4(10.1) | |||
(3) SIacc/APacc | RMSE Abs Bias | 33.6 | 44.0 | 43.8 | 60.5 | 32.6 | |
22.1(25.4) | 34.3(27.5) | 30.9(31) | 44.1(41.5) | 20.3(25.6) | |||
(4) MLvel/APacc | RMSE Abs Bias | 18.0 | 10.3 | 13.0 | 13.2 | 41.9 | |
11.6(13.8) | 6.8(7.8) | 9.6(8.7) | 9.4(9.3) | 29.7(29.6) | |||
(5) APacc/MLvel | RMSE Abs Bias | 24.7 | 18.7 | 77.2 | 56.2 | 47.2 | |
17.2(17.7) | 8.8(16.5) | 58.5(50.3) | 37.2(42.1) | 31.1(35.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niswander, W.; Kontson, K. Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms. Sensors 2021, 21, 3989. https://doi.org/10.3390/s21123989
Niswander W, Kontson K. Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms. Sensors. 2021; 21(12):3989. https://doi.org/10.3390/s21123989
Chicago/Turabian StyleNiswander, Wesley, and Kimberly Kontson. 2021. "Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms" Sensors 21, no. 12: 3989. https://doi.org/10.3390/s21123989
APA StyleNiswander, W., & Kontson, K. (2021). Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms. Sensors, 21(12), 3989. https://doi.org/10.3390/s21123989