Circularly Polarized Hybrid Dielectric Resonator Antennas: A Brief Review and Perspective Analysis
Abstract
:1. Introduction
- Nearly equal magnitudes for two orthogonal modes or polarizations and equal radiation pattern shapes.
- Nearly ±90° difference in phase over a wide-bandwidth and wide-beam width.
- Small axial ratio (close to 0 dB i.e., <3 dB or numerical 1) over a wide-AR bandwidth and wide-beam width.
- For linearly polarized (LP) plane wave, the difference of phase angle between the x and y components must be:
- For the circularly polarized wave, the magnitudes of the x and y components are equal (i.e., ), and difference in phase angle is odd multiples of 90°, and it is mathematically expressed as:
- If does not satisfy Equation (1) or then the wave is elliptically polarized.
2. Historical Review of DR Antennas and CP Methods
3. Classification and Progress of Dielectric Antennas
4. Circularly Polarized DR Based Hybrid Antennas
4.1. Wideband Hybrid Antennas with CP Radiation
4.2. Multi-Functional Hybrid Antennas with CP Radiation
4.3. Dual-Sense Polarized Hybrid Antennas
5. Formulation to Find Resonance of Various Modes Associated with Hybrid DRAs
6. Future Scope and Challenges
- Employing metamaterial concepts and magnetic LC resonators on the metallic patch, considering dielectric-loaded patch and metallic patch loaded on top of dielectric antennas.
- Various available fractal concepts can be employed on the patch as well as the DR elements particularly to achieve multifunctional bands of resonance.
- Existing bandwidth and gain enhancement techniques can be applied for the combined form of hybrid DR-based antennas.
- A combination of a metallic waveguide, microstrip, and DR antennas with a proper feeding mechanism can be developed for future radar applications.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Kraus, J. Antennas since Hertz and Marconi. IEEE Trans. Antennas Propag. 1985, 33, 131–137. [Google Scholar] [CrossRef]
- Deschamps, G.A. Microstrip Microwave Antennas. In Proceedings of the 3rd Symposium on the USAF Antenna Research and Development Program, University of Illinois, Monticello, IL, USA, 18–22 October 1953. [Google Scholar]
- Munson, R.E. Single Slot Cavity Antennas Assembly. U.S. Patent No. 3713162, 23 January 1973. [Google Scholar]
- Munson, R. Conformal microstrip antennas and microstrip phased arrays. IRE Trans. Antennas Propag. 1974, 22, 74–78. [Google Scholar] [CrossRef]
- Howell, J.Q. Microstrip Antennas. IEEE Trans. Ant. Prop. 1975, AP-23, 90–93. [Google Scholar] [CrossRef]
- Bahl, I.J.; Bhartia, P. Microstrip Antennas; Artech House: Dedham, MA, USA, 1980. [Google Scholar]
- Carver, K.R.; Mink, J. Microstrip antenna technology. IRE Trans. Antennas Propag. 1981, 29, 2–24. [Google Scholar] [CrossRef]
- Mailloux, R.; McIlvenna, J.; Kernweis, N. Microstrip array technology. IRE Trans. Antennas Propag. 1981, 29, 25–37. [Google Scholar] [CrossRef]
- James, J.; Hall, P.; Wood, C.; Henderson, A. Some recent developments in microstrip antenna design. IRE Trans. Antennas Propag. 1981, 29, 124–128. [Google Scholar] [CrossRef]
- Guha, D.; Kumar, C. Microstrip Patch versus Dielectric Resonator Antenna Bearing all Commonly used Feeds: An Experimental Study to Choose the Right Element. IEEE Ant. Prop. Mag. 2016, 58, 45–55. [Google Scholar] [CrossRef]
- Richtmyer, R.D. Dielectric Resonators. J. Appl. Phys. 1939, 10, 391–398. [Google Scholar] [CrossRef]
- Gastine, M.; Courtois, L.; Dormann, J. Electromagnetic resonances of free dielectric spheres. IEEE Trans. Microw. Theory Tech. 1967, 15, 694–700. [Google Scholar] [CrossRef]
- Sager, O.; Tisi, F. On Eigen Modes and Forced Resonance-Modes of Dielectric Spheres. Proc. IEEE 1968, 56, 1593–1594. [Google Scholar] [CrossRef]
- McAllister, M.W.; Long, S.A.; Conway, G.L. Rectangular dielectric resonator antenna. Electron. Lett. 1983, 19, 218–219. [Google Scholar] [CrossRef]
- Long, S.; McAllister, M.; Shen, L. The resonant cylindrical dielectric cavity antenna. IRE Trans. Antennas Propag. 1983, 31, 406–412. [Google Scholar] [CrossRef]
- McAllister, M.W.; Long, S.A. Resonant hemispherical dielectric antenna. Electron. Lett. 1984, 20, 657. [Google Scholar] [CrossRef]
- Ittipiboon, A.; Cuhaci, M.; Mongia, R.; Bhartia, P.; Antar, Y. Aperture fed rectangular and triangular dielectric resonators for use as magnetic dipole antennas. Electron. Lett. 1993, 29, 2001. [Google Scholar] [CrossRef]
- Leung, K.W.; Luk, K.M.; Yung, E. Spherical cap dielectric resonator antenna using aperture coupling. Electron. Lett. 1994, 30, 1366–1367. [Google Scholar] [CrossRef]
- Mongia, R.K.; Ittipiboon, A.; Bhartia, P.; Cuhaci, M. Electric-Monopole Antenna Using a Dielectric Ring Resonator. Electron. Lett. 1993, 29, 1530–1531. [Google Scholar] [CrossRef]
- Runa, K.; Behera, S.K. Mushroom-Shaped Dielectric Resonator Antenna for WiMAX Applications. Microw. Opt. Tech. Lett. 2013, 55, 1360–1365. [Google Scholar]
- Mongia, R.K.; Bhartia, P. Dielectric Resonator Antennas—A Review and General Design Relations for Resonant Frequency and Bandwidth. Int. J. Microw. Millim. Wave Comput. Aided Eng. 1994, 4, 230–247. [Google Scholar] [CrossRef]
- Rao, Q.; Denidni, T.A. Study of Broadband Dielectric Resonator Antennas. PIERS Online 2005, 1, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Guha, D.; Antar, Y.M.M. Ultra-Wideband Monopole-Dielectric Resonator Antennas: Designs and Advances. In Proceedings of the 2010 URSI International Symposium on Electromagnetic Theory, Berlin, Germany, 16–19 August 2010; IEEE: New York, NY, USA; pp. 428–431. [Google Scholar]
- Petosa, A.; Ittipiboon, A. Dielectric Resonator Antennas: A Historical Review and the Current State of the Art. IEEE Antennas Propag. Mag. 2010, 52, 91–116. [Google Scholar] [CrossRef]
- Leung, K.W.; Lim, E.H.; Fang, X.S. Dielectric Resonator Antennas: From the Basic to the Aesthetic. Proc. IEEE 2012, 100, 2181–2193. [Google Scholar] [CrossRef]
- Soren, D.; Ghatak, R.; Mishra, R.K.; Poddar, D.R. Dielectric Resonator Antennas: Designs and Advances. Prog. Electromagn. Res. B 2014, 60, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Gangwar, R.K. Circularly Polarized Dielectric Resonator Antennas: Design and Developments. Wirel. Pers. Commun. 2015, 86, 851–886. [Google Scholar] [CrossRef]
- Dash, S.K.K.; Khan, T.; De, A. Modelling of dielectric resonator antennas using numerical methods: A review. J. Microw. Power Electromagn. Energy 2016, 50, 269–293. [Google Scholar] [CrossRef]
- Dash, S.K.K.; Khan, T.; De, A. Dielectric resonator antennas: An application oriented survey. Int. J. RF Microw. Comput. Eng. 2016, 27, e21069. [Google Scholar] [CrossRef]
- Ullah, U.; Ain, M.F.; Ahmad, Z.A. A review of wideband circularly polarized dielectric resonator antennas. China Commun. 2017, 14, 65–79. [Google Scholar] [CrossRef]
- Dash, S.K.K.; Khan, T. Recent developments in bandwidth improvement of dielectric resonator antennas. Int. J. RF Microw. Comput. Eng. 2019, 29, e21701. [Google Scholar] [CrossRef]
- Banerjee, U.; Karmakar, A.; Saha, A. A review on circularly polarized antennas, trends and advances. Int. J. Microw. Wirel. Technol. 2020, 12, 922–943. [Google Scholar] [CrossRef]
- Mongia, R.K.; Ittipiboon, A.; Cuhaci, M.; Roscoe, D. Circularly Polarized Dielectric Resonator Antenna. Electron. Lett. 1994, 30, 1361–1362. [Google Scholar] [CrossRef]
- Kishk, A.A. An elliptic dielectric resonator antenna designed for circular polarization with single feed. Microw. Opt. Technol. Lett. 2003, 37, 454–456. [Google Scholar] [CrossRef]
- Li, B.; Leung, K.W. Strip-fed rectangular dielectric resonator antennas with/without a parasitic patch. IEEE Trans. Antennas Propag. 2005, 53, 2200–2207. [Google Scholar] [CrossRef]
- Chu, L.C.Y.; Guha, D.; Antar, Y.M.M. Comb-Shaped Circularly Polarized Dielectric Resonator Antenna. Electron. Lett. 2006, 42, 785–787. [Google Scholar] [CrossRef]
- Khoo, K.-W.; Guo, Y.-X.; Ong, L.C. Wideband Circularly Polarized Dielectric Resonator Antenna. IEEE Trans. Antennas Propag. 2007, 55, 1929–1932. [Google Scholar] [CrossRef]
- Mohsen, K.; Kamarudin, M.R.; Mokayef, M.; Danesh, S.; Ghahferokhi, S.E.A. A New Wideband Circularly Polarized Dielectric Resonator Antenna. Radioeng. J. 2014, 23, 175–180. [Google Scholar]
- Patel, P.; Mukherjee, B.; Mukherjee, J. A Compact Wideband Rectangular Dielectric Resonator Antenna using Perforations and Edge Grounding. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 490–493. [Google Scholar] [CrossRef]
- Majeed, A.H.; Abdullah, A.S.; Elmegri, F.; Sayidmarie, K.H.; Abd-Alhameed, R.A.; Noras, J.M. Dual-Segment S-shaped Aperture-Coupled Cylindrical Dielectric Resonator Antenna for X-band Applications. IET Microw. Ant. Prop. 2015, 9, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Trinh-Van, S.; Yang, Y.; Lee, K.-Y.; Hwang, K.C. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna. Sensors 2016, 16, 1349. [Google Scholar] [CrossRef] [Green Version]
- Rajkishor, K.; Raghvendra, K.C. A Wideband Circularly Polarized Dielectric Resonator Antenna Excited with Conformal-Strip and Inverted L-Shaped Microstrip Feed line for WLAN/WiMAX Applications. Microw. Opt. Tech. Lett. 2016, 58. [Google Scholar] [CrossRef]
- Darimireddy, N.K.; Reddy, R.R.; Prasad, A.M. Tri-Band and Quad-Band Dual L-Slot Coupled Circularly Polarized Dielectric Resonator Antennas. Int. J. RF Microw. Comput. Aided Eng. 2018, 28, e21409. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Leung, K.W.; Mao, J.-F. Dual-Function Dielectric Resonator as Antenna and Phase-Delay-Line Load: Designs of Compact Circularly Polarized/Differential Antennas. IEEE Trans. Antennas Propag. 2017, 66, 414–419. [Google Scholar] [CrossRef]
- Sethares, J.; Naumann, S. Design of Microwave Dielectric Resonators. IEEE Trans. Microw. Theory Tech. 1966, 14, 2–7. [Google Scholar] [CrossRef]
- Guillon, P.; Garault, Y. Accurate Resonant Frequencies of Dielectric Resonators. IEEE Trans. Microw. Theory Tech. 1977, 25, 916–922. [Google Scholar] [CrossRef]
- Legier, J.F.; Kennis, P.; Toutian, S.; Citeme, J. Resonant Frequencies of Rectangular Dielectric Resonators. IEEE Trans. Microw. Theory Tech. 1980, 28, 1031–1034. [Google Scholar] [CrossRef]
- Singh, D.; Morgan, G. Technical memorandum higher mode resonances of high permittivity square cuboid dielectric resonators on integrated circuit substrates. IEE Proc. H Microw. Antennas Propag. 1987, 134, 563–565. [Google Scholar] [CrossRef]
- Mongia, R.K.; Ittipiboon, A.; Cuhaci, M.; Roscoe, D. Radiation Q-factor of rectangular dielectric resonator antennas: Theory and experiment. In Proceedings of the IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Seattle, WA, USA, 20–24 June 1994; 1994; pp. 764–767. [Google Scholar]
- Petosa, A.; Simons, N.; Siushansian, R.; Ittipiboon, A.; Cuhaci, M. Design and Analysis of Multi-Segment Dielectric Resonator Antennas. IEEE Trans. Antennas Propag. 2000, 48, 738–742. [Google Scholar] [CrossRef]
- Lee, M.T.; Luk, K.M.; Leung, K.W.; Leung, M.K. A small dielectric resonator antenna. IEEE Trans. Antennas Propag. 2002, 50, 1485–1487. [Google Scholar] [CrossRef]
- Denidni, T.; Rao, Q.; Sebak, A. Multi-eccentric ring slot-fed dielectric resonator antennas for multi-frequency operations. In Proceedings of the IEEE Antennas Propagation Society International Symposium, Monterrey, QC, Canada, 5 June 2004. [Google Scholar]
- Ittipiboon, A.; Petosa, A.; Roscoe, D.; Cuhaci, M. An investigation of a novel broadband dielectric resonator antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium Digest, Baltimore, MA, USA, 21–26 July 1996; pp. 2038–2041. [Google Scholar]
- Leung, K.; Luk, K.; Chow, K.; Yung, E. Bandwidth enhancement of dielectric resonator antenna by loading a low-profile dielectric disk of very high permittivity. Electron. Lett. 1997, 33, 725. [Google Scholar] [CrossRef]
- Chair, R.; Kishk, A.; Lee, K.; Smith, C. Broadband aperture coupled flipped staired pyramid and conical dielectric resonator antennas. In Proceedings of the IEEE Antennas and Propagation Society Symposium, Monterrey, QC, Canada, 20–24 June 2004. [Google Scholar]
- George, J.; Aanandan, C.K.; Mohanan, P.; Nair, K.G.; Sreemoolanadhan, H.; Sebastian, M.T. Dielectric Resonator Loaded Microstrip Antenna for Enhanced Impedance Bandwidth and Efficiency. Microw. Opt. Technol. Lett. 1993, 17, 205–207. [Google Scholar] [CrossRef]
- Lda, I.; Sato, J.; Yoshimura, H.; Lto, K. Improvement in the Efficiency-Bandwidth Product in Small Dielectric-Loaded Antennas. Electron. Lett. 2000, 36, 861–862. [Google Scholar]
- Bijumon, P.V.; Menon, S.K.; Sebastian, M.T.; Mohanan, P. Enhanced bandwidth microstrip patch antennas loaded with high permittivity dielectric resonators. Microw. Opt. Technol. Lett. 2002, 35, 327–330. [Google Scholar] [CrossRef]
- Gupta, V.; Sinha, S.; Koul, S.K.; Bhat, B. Wideband dielectric resonator-loaded suspended microstrip patch antennas. Microw. Opt. Technol. Lett. 2003, 37, 300–302. [Google Scholar] [CrossRef]
- Lapierre, M.; Antar, Y.; Ittipiboon, A.; Petosa, A. A wideband monopole antenna using dielectric resonator loading. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, USA, 22–27 June 2003; pp. 16–19. [Google Scholar]
- Fan, Z.; Antar, Y.; Ittipiboon, A.; Petosa, A. Parasitic coplanar three-element dielectric resonator antenna subarray. Electron. Lett. 1996, 32, 789. [Google Scholar] [CrossRef]
- Esselle, K.P. A Dielectric-Resonator-On-Patch (DROP) Antenna for Broadband Wireless Applications: Concept and Re-sults. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Boston, MA, USA, 8–13 July 2001; pp. 22–25. [Google Scholar]
- Esselle, K.P.; Bird, T.S. Hybrid Resonator Antennas for Broadband Wireless Applications. In Proceedings of the XXVllth General Assembly of the International Union of Radio Science (URSI), Maastricht, The Netherlands, 17–24 August 2002. [Google Scholar]
- Leung, K.W.; Wong, W.; Ng, H. Circularly polarized slot-coupled dielectric resonator antenna with a parasitic patch. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 57–59. [Google Scholar] [CrossRef]
- Mongia, R.K. Small Electric Monopole Mode Dielectric Resonator Antenna. Electron. Lett. 1996, 32, 947–949. [Google Scholar] [CrossRef]
- Li, Z.; Wu, C.; Litva, J. Adjustable frequency dielectric resonator antenna. Electron. Lett. 1996, 32, 606. [Google Scholar] [CrossRef]
- Ittipiboon, A.; Petosa, A.; Thirakoune, S. Bandwidth Enhancement of a Monopole using Dielectric Resonator Antenna Loading. In Proceedings of the 2002 9th International Symposium on Antenna Technology and Applied Electromagnetics ANTEM, Montreal, QC, Canada, 31 July–2 August 2002; pp. 387–390. [Google Scholar]
- Yung, E.K.N.; Lee, W.W.S.; Luk, K.M. Microstrip antenna top-loaded by a dielectric resonator. Microw. Opt. Technol. Lett. 1994, 7, 55–57. [Google Scholar] [CrossRef]
- Thirakoune, S.; Ittipiboon, A.; Petosa, A. Proximity-coupled patch antenna with dielectric loading. In Proceedings of the Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2000], Winnipeg, MB, Canada, 30 July–2 August 2000; pp. 231–234. [Google Scholar]
- Ittipiboon, A.; Petosa, A.; Cuhaci, M. Dielectric Loaded Microstrip Patch Antenna. U.S. Patent No. 6,281,845, 28 August 2001. [Google Scholar]
- Gao, Y.; Ooi, B.-L.; Ewe, W.-B.; Popov, A.P. A compact wideband hybrid dielectric resonator antenna. IEEE Microw. Wirel. Components Lett. 2006, 16, 227–229. [Google Scholar] [CrossRef]
- Nasimuddin, N.; Esselle, K. A Low-Profile Compact Microwave Antenna with High Gain and Wide Bandwidth. IEEE Trans. Antennas Propag. 2007, 55, 1880–1883. [Google Scholar] [CrossRef]
- Coulibaly, Y.; Denidni, T.A.; Boutayeb, H. Broadband Microstrip-Fed Dielectric Resonator Antenna for X-Band Applications. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 341–345. [Google Scholar] [CrossRef]
- Jazi, M.N.; Denidni, T.A. Design and Implementation of an Ultrawideband Hybrid Skirt Monopole Dielectric Resonator Antenna. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 493–496. [Google Scholar] [CrossRef]
- Ahmed, O.M.H.; Sebak, A.R.; Denidni, T.A. Size Reduction and Bandwidth Enhancement of a UWB Hybrid Dielectric Resonator Antenna for Short-Range Wireless Communications. Prog. Electromagn. Res. Lett. 2010, 19, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Ozzaim, C. Monopole Antenna Loaded by a Stepped-Radius Dielectric Ring Resonator for Ultrawide Bandwidth. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 843–845. [Google Scholar] [CrossRef]
- Denidni, T.; Weng, Z. Hybrid ultrawideband dielectric resonator antenna and band-notched designs. IET Microw. Antennas Propag. 2011, 5, 450. [Google Scholar] [CrossRef]
- Guha, D.; Gupta, B.; Antar, Y.M.M. Hybrid Monopole-DRAs Using Hemispherical/Conical-Shaped Dielectric Ring Resonators: Improved Ultra-wideband Designs. IEEE Trans. Antennas Propag. 2012, 60, 393–398. [Google Scholar] [CrossRef]
- Ozzaim, C.; Ustuner, F.; Tarim, N. Stacked Conical Ring Dielectric Resonator Antenna Excited by a Monopole for Improved Ultrawide Bandwidth. IEEE Trans. Antennas Propag. 2012, 61, 1435–1438. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Denidni, T.A.; Zeng, Q.; Wei, G. Integrated Ultra-Wideband Planar Monopole with Cylindrical Dielectric Resonator Antennas. Prog. Electromagn. Res. C 2013, 44, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Denidni, T.; Zeng, Q.; Wei, G. Design of high gain, broadband cylindrical dielectric resonator antenna. Electron. Lett. 2013, 49, 1506–1507. [Google Scholar] [CrossRef]
- Chaudhary, R.K.; Kumar, R.; Srivastava, K.V. Wideband Ring Dielectric Resonator Antenna with Annular-Shaped Microstrip Feed. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 595–598. [Google Scholar] [CrossRef]
- Zou, M.; Pan, J. Investigation of Resonant Modes in Wideband Hybrid Omnidirectional Rectangular Dielectric Resonator Antenna. IEEE Trans. Antennas Propag. 2015, 63, 3272–3275. [Google Scholar] [CrossRef]
- Xing, L.; Huang, Y.; Xu, Q.; Alja’Afreh, S. A Wideband Hybrid Water Antenna with an F-Shaped Monopole. IEEE Access 2015, 3, 1179–1187. [Google Scholar] [CrossRef]
- Xing, L.; Huang, Y.; Xu, Q.; Alja’Afreh, S. Wideband, hybrid rectangular water antenna for DVB-H applications. Microw. Opt. Technol. Lett. 2015, 57, 2160–2164. [Google Scholar] [CrossRef]
- Erfani, E.; Niroo-Jazi, M.; Tatu, S.; Denidni, T. A Hybrid Dielectric Resonator Antenna for Spectrum Sensing and Ultra-Wideband Applications. Microw. Opt. Tech. Lett. 2016, 58, 2609–2611. [Google Scholar] [CrossRef]
- Qian, Y.-H.; Chu, Q.-X. A Broadband Hybrid Monopole-Dielectric Resonator Water Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 360–363. [Google Scholar] [CrossRef]
- Agrawal, S.; Parihar, M.S.; Kondekar, P.N. Performance Analysis of a Low-Profile Hybrid Antenna for Broadband Applications. Wirel. Pers. Commun. 2018, 100, 995–1007. [Google Scholar] [CrossRef]
- Song, Z.; Zheng, H.; Wang, M.; Li, Y.; Song, T.; Li, E.; Li, Y. Equilateral Triangular Dielectric Resonator and Metal Patch Hybrid Antenna for UWB Application. IEEE Access 2019, 7, 119060–119068. [Google Scholar] [CrossRef]
- Gao, Y.; Ooi, B.-L.; Popov, A.P. Dual-band hybrid dielectric resonator antenna with CPW-fed slot. Microw. Opt. Technol. Lett. 2005, 48, 170–172. [Google Scholar] [CrossRef]
- Qinjiang, R.; Tayeb, A.D.; Sebak, A.R. A Hybrid Resonator Antenna Suitable for Wireless Communication Applications at 1.9 and 2.45 GHz. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 341–343. [Google Scholar] [CrossRef]
- Rao, Q.; Denidni, T.; Johnston, R. A novel feed for a multifrequency hybrid resonator antenna. IEEE Microw. Wirel. Components Lett. 2005, 15, 238–240. [Google Scholar] [CrossRef]
- Ding, Y.; Leung, K.W. On the Dual-Band DRA-Slot Hybrid Antenna. IEEE Trans. Antennas Propag. 2009, 57, 624–630. [Google Scholar] [CrossRef]
- Iellici, D.; Kingsley, S.P.; Kingsley, J.W.; O’Keefe, S.G.; Tyler, S.W.S. Hybrid Antenna Using Parasitic Excitation of Conducting Antennas by Dielectric Antennas. U.S. Patent 7,545,327, 9 June 2009. [Google Scholar]
- Yeom, J.; Jeon, S.; Choi, H.; Kim, H. Compact Hybrid DRA Combined with PIFA. IEICE Trans. Commun. 2010, E93-B, 2781–2783. [Google Scholar] [CrossRef]
- Mitra, S.B.; Gupta, B. A novel multifrequency hybrid antenna. Microw. Opt. Technol. Lett. 2013, 55, 2712–2715. [Google Scholar] [CrossRef]
- Messaoudene, I.; Denidni, T.A.; Benghalia, A. A Hybrid Integrated Ultra-Wideband/Dual-Band Antenna with High Isolation. Int. J. Microw. Wirel. Tech. 2015, 8, 341–346. [Google Scholar] [CrossRef]
- Dhar, S.; Patra, K.; Ghatak, R.; Gupta, B.; Poddar, D.R. A Dielectric Resonator-Loaded Minkowski Fractal-Shaped Slot Loop Hepta-Band Antenna. IEEE Trans. Antennas Propag. 2015, 63, 1521–1529. [Google Scholar] [CrossRef]
- Sahu, N.K.; Sharma, A.; Gangwar, R.K. Modified annular ring patch fed cylindrical dielectric resonator antenna for WLAN/WIMAX applications. Microw. Opt. Technol. Lett. 2017, 59, 120–125. [Google Scholar] [CrossRef]
- Sharma, A.; Das, G.; Gangwar, R.K. Dual-band circularly polarized hybrid antenna for WLAN/WiMAX applications. Microw. Opt. Technol. Lett. 2017, 59, 2450–2457. [Google Scholar] [CrossRef]
- Das, G.; Sharma, A.; Gangwar, R.K. Triple-Band Hybrid Antenna with Integral Isolation Mechanism for MIMO Applications. Microw. Opt. Tech. Lett. 2018, 60, 1482–1491. [Google Scholar] [CrossRef]
- Das, G.; Sharma, A.; Gangwar, R.K. Dielectric resonator-based two-element MIMO antenna system with dual band characteristics. IET Microw. Antennas Propag. 2018, 12, 734–741. [Google Scholar] [CrossRef]
- Anshul, G.; Ravi, K.G. Hybrid Rectangular Dielectric Resonator Antenna for Multiband Applications. IETE Tech. Rev. 2019, 37, 83–90. [Google Scholar]
- Lin, I.K.C.; Jamaluddin, M.H.; Awang, A.; Selvaraju, R.; Dahri, M.H.; Yen, L.C.; Rahim, H.A. A Triple Band Hybrid MIMO Rectangular Dielectric Resonator Antenna for LTE Applications. IEEE Access 2019, 7, 122900–122913. [Google Scholar] [CrossRef]
- Antar, Y.M.M.; Guha, D. Composite and Hybrid Dielectric Resonator Antennas: Recent Advances and Challenges. In Proceedings of the Twenty Third National Radio Science Conference (NRSC’2006), Menouf, Egypt, 14–16 March 2006; pp. 1–7. [Google Scholar]
- Stout, S.M. Compact Dielectric-Loaded Patch Antennas for L-Band Mobile Satellite Applications. Master’s Thesis, Carleton University, Ottawa, ON, Canada, September 1999. [Google Scholar]
- Currie, C.J.; Antar, Y.M.; Petosa, A.; Ittipiboon, A. Compact Circularly Polarized Antenna Designs using Dielectrics. In Proceedings of the URSI Conference, Victoria, BC, Canada, 13–17 May 2001; pp. 359–361. [Google Scholar]
- Currie, C.J.; Antar, Y.M.M.; Petosa, A.; Ittipiboon, A. Compact Dielectric Loaded Circularly Polarized Microstrip Antenna. Electron. Lett. 2001, 37, 1104–1105. [Google Scholar] [CrossRef]
- Hsiao, F.-R.; Chiou, T.-W.; Wong, K.-L. Circularly Polarized Low-Profile Square Dielectric Resonator Antenna with a Loading Patch. Microw. Opt. Technol. Lett. 2001, 31, 157–159. [Google Scholar] [CrossRef]
- Massie, G.; Caillet, M.; Clenet, M.; Antar, Y.M.M. A New Wideband Circularly Polarized Hybrid Dielectric Resonator Antenna. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 347–350. [Google Scholar] [CrossRef]
- Massie, G.; Caillet, M.; Clenet, M.; Antar, Y.M.M. Wideband Circularly Polarized Hybrid Dielectric Resonator Antenna. U.S. Patent 8,928,544, 6 January 2015. [Google Scholar]
- Perron, A.; Denidni, T.A.; Sebak, A.R. Circularly Polarized Microstrip/Elliptical Dielectric Ring Resonator Antenna for Millimeter-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 783–786. [Google Scholar] [CrossRef]
- Zou, M.; Pan, J. Wideband Hybrid Circularly Polarized Rectangular Dielectric Resonator Antenna Excited by Modified Cross-Slot. Electron. Lett. 2014, 50, 1123–1125. [Google Scholar] [CrossRef]
- Lu, L.; Jiao, Y.-C.; Zhang, H.; Wang, R.; Li, T. Wideband Circularly Polarized Antenna with Stair-Shaped Dielectric Resonator and Open-Ended Slot Ground. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1755–1758. [Google Scholar] [CrossRef]
- Chowdhury, R.; Mishra, N.; Sani, M.M.; Chaudhary, R.K. Analysis of a Wideband Circularly Polarized Cylindrical Dielectric Resonator Antenna with Broadside Radiation Coupled with Simple Microstrip Feeding. IEEE Access 2017, 5, 19478–19485. [Google Scholar] [CrossRef]
- Iqbal, J.; Illahi, U.; Sulaiman, M.I.; Alam, M.M.; Su’ud, M.M.; Mohd Yasin, M.N. Mutual Coupling Reduction using Hybrid Technique in Wideband Circularly Polarized MIMO Antenna for WiMAX Applications. IEEE Access 2019, 7, 40951–40958. [Google Scholar] [CrossRef]
- Darimireddy, N.K.; Park, C.-W. Electromagnetic Coupled Circularly Polarized Hybrid Antenna for LTE Ap-plications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020. [Google Scholar]
- Nannini, C.; Ribero, J.-M.; Dauvignac, J.-Y.; Pichot, C. A Dual-Frequency Circularly Polarized Structure Antenna. Microw. Opt. Technol. Lett. 2002, 32, 418–420. [Google Scholar] [CrossRef]
- Ding, Y.; Leung, K.W.; Luk, K.M. Compact Circularly Polarized Dual-band Zonal-Slot/DRA Hybrid Antenna Without External Ground Plane. IEEE Trans. Antennas Propag. 2011, 59, 2404–2409. [Google Scholar] [CrossRef]
- Zou, M.; Pan, J.; Zuo, L.; Nie, Z.-P. Investigation of a cross-slot-coupled dual-band circularly polarized hybrid dielectric resonator antenna. Prog. Electromagn. Res. C 2014, 53, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Gangwar, R.K. Circularly Polarized Hybrid Z-Shaped Cylindrical Dielectric Resonator Antenna for Multi-band Applications. IET Microw. Antennas Propag. 2016, 10, 1259–1267. [Google Scholar] [CrossRef]
- Guha, D.; Antar, Y.M.M.; Ittipiboon, A.; Petosa, A.; Lee, D. Improved design guidelines for the ultra wideband monopole-dielectric resonator antenna. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 373–376. [Google Scholar] [CrossRef]
- Lapierre, M.; Antar, Y.; Ittipiboon, A.; Petosa, A. Ultra wideband monopole/dielectric resonator antenna. IEEE Microw. Wirel. Components Lett. 2005, 15, 7–9. [Google Scholar] [CrossRef]
- Gray, D.; Watanabe, T. Three Orthogonal Polarization DRA-Monopole Ensemble. Electron. Lett. 2003, 39, 766–767. [Google Scholar] [CrossRef]
- Sharma, A.; Gangwar, R.K. Triple-band dual-polarized hybrid cylindrical dielectric resonator antenna with hybrid modes excitation. Prog. Electromagn. Res. C 2016, 67, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Sahu, N.K.; Sharma, A.; Gangwar, R.K. Design and analysis of wideband composite antenna with dual-sense circular polarization characteristics. Microw. Opt. Technol. Lett. 2018, 60, 2048–2054. [Google Scholar] [CrossRef]
- Altaf, A.; Seo, M. Triple-Band Dual-Sense Circularly Polarized Hybrid Dielectric Resonator Antenna. Sensors 2018, 18, 3899. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Nasimuddin; Chaudhary, R.K. Wideband circularly polarized hybrid dielectric resonator antenna with bi-directional radiation characteristics for various wireless applications. Int. J. RF Microw. Comput. Eng. 2019, 29. [Google Scholar] [CrossRef]
- Darimireddy, N.K.; Park, C.-W.; Reddy, R.R.; Reddy, B.R.S. Multi-Band Rectangular Hybrid Antennas Loaded with Inter-Digital Structure Slot. In Proceedings of the IEEE Indian Conference on Antennas and Propagation (IEEE-InCAP), Ahmedabad, India, 19–22 December 2019. [Google Scholar]
- Rahim, S.B.A.; Lee, C.K.; Qing, A.; Jamaluddin, M.H. A Triple-Band Hybrid Rectangular Dielectric Resonator Antenna (RDRA) for 4G LTE Applications. Wirel. Pers. Commun. 2017, 98, 3021–3033. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Sharma, A.; Gupta, M.; Chaudhary, S. Hybrid Cylindrical Dielectric Resonator Antenna with HE 11δ And HE 12δ Mode Excitation for Wireless Applications. Int. J. RF Microwav. Comput. Aided. Eng. 2016, 26, 812–818. [Google Scholar] [CrossRef]
- Kajfez, D.; Glisson, A.; James, J. Computed Modal Field Distributions of Isolated Dielectric Resonators. IEEE Trans. Antennas Propag. 1984, 32, 1609–1616. [Google Scholar]
- Sharma, A.; Das, G.; Gupta, S.; Gangwar, R.K. Quad-Band Quad-Sense Circularly Polarized Dielectric Resonator Antenna for GPS/CNSS/WLAN/WiMAX Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 403–407. [Google Scholar] [CrossRef]
- Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Norwood, MA, USA, 2001. [Google Scholar]
- Guha, D.; Gupta, P.; Kumar, C. Dualband cylindrical dielectric resonator antenna employing HEM11δ and HEM12δ modes excited by new composite aperture. IEEE Trans. Antennas Propag. 2015, 63, 433–438. [Google Scholar] [CrossRef]
Year | Past Review Highlights | Reference |
---|---|---|
1994 |
| [22] |
2005 |
| [23] |
2006 |
| [41] |
2010 |
| [24] |
2010 |
| [25] |
2012 |
| [26] |
2014 |
| [27] |
2015 |
| [28] |
2016 |
| [29] |
2017 |
| [30] |
2017 |
| [31] |
2019 |
| [32] |
2020 |
| [33] |
HDRA Description [Reference] | CP is Achieved by | Volume of the HDRA (in Terms of λ at fr) (L × W × Heff) | fr (or) CP Bands of Resonance (GHz) | 10 dB RL Bandwidth (MHz) or % | 3 dB AR Bandwidth (MHz) or % | Gain (dBic) |
---|---|---|---|---|---|---|
Four dielectric inserts under the patch and coupled with cross slot [109] | Dielectric inserts and square patch coupled through cross-slot | 0.67λ × 0.67λ × 0.075λ | L-band | 7.8 % | 2.5% | 9.1 |
A strip-line fed rectangular DRA with top-loaded rectangular patch [110] | Rectangular DR element loaded with a rectangular patch with various aspect ratios | 0.37λ × 0.37λ × 0.048λ | 2170–2270 | 100 | 25 or 1.1% | 3.3 |
Cylindrical DRA and ground plane having four slots fed through microstrip line feed network [111] | Having a feeding network consisting of four microstrip lines; wherein the four slots are constructed and geometrically arranged to ensure CP | 0.8λ × 0.8λ × 0.12λ | 1.08–1.82 | 740 | 600 | 5 |
Four sequentially rotated arc-shaped slots etched in the ground plane to feed the DRA [112] | Due to the arc-shaped slots | 0.8λ × 0.8λ × 0.118λ | 1.22- 1.71 | 490 | 380 | 3 |
Aperture coupled microstrip loaded with an elliptical ring dielectric resonator [113] | A reversed T-shaped coupling slot | 6λ × 4λ × 0.252λ | 55.6–65 | 9400 | 2000 | 9 |
Rectangular DRA with modified slot and microstrip line [114] | Modified cross-slot | 0.43λ × 0.43λ × 0.29λ | 2.19–2.92 | 730 | 630 | 5 |
An open-ended slot with Stair-shaped DR loaded on the ground [115] | Combination of Stair-shaped DR and Open-ended slot on the ground plane with an offset feed | 0.46λ × 0.46λ × 0.07λ | 3.844–8.146 | 4302 | 2480 | 3.9 |
Cylindrical DR loaded on L shaped microstrip line with vertical strips-lines attached to DR [116] | Dual vertical microstrip lines with L-shaped microstrip-line arranged perpendicularly to excite orthogonal modes | 0.59λ × 0.59λ × 0.26λ | 2.82–3.83 | 1010 | 770 | 5.5 |
A rectangular DRA with conformal metal strip [117] | Employment of parasitic patch at an optimized distance beside the conformal metal strip of the two identical rectangular DRAs to generate CP | 0.46λ × 0.46λ × 0.34λ | 3.50–4.95 | 1450 | 820 | 6.2 |
HDRA Description [Reference] | CP is Achieved by | Volume of the HDRA (in Terms of λ at Lower fr) (L × W × Heff) | fr or CP Bands of Resonance (GHz) | 10 dB RL Bandwidth (MHz) | 3 dB AR Bandwidth (MHz) | Gain (dBi) |
---|---|---|---|---|---|---|
A zonal-slot antenna cut onto a conducting cavity is combined with rectangular DRA [120] | Zonal and cross slots with L-Probe feed ensures CP | 0.275λ × 0.275λ × 0.26λ | 2.34–2.53, and 4.46–5.34 | 190, and 880 | 80, and 180 | 5.80 and 4.29 |
A cross-slot acts as both the feeding structure of the DRA and an effective radiator [121] | Cross slot as aperture coupled feed and radiator | 0.475λ × 0.475λ × 0.098λ | 1.80–2.07, and 2.57–2.92 | 270, and 350 | 60, and 100 | 4.7, and 5.6 |
Consists of a Z-shaped CDRA along with a dual C-shaped patch [122] | Offset between upper and lower CDRAs is responsible for CP | 0.22λ × 0.22λ × 0.049λ | 7.2–8.5 | 1300 | 500 | 2.5, 3.2, 3.5, 4 and 6 |
HDRA Description [Reference] | Volume of the HDRA (in Terms of λ at Lower fr) (L × W × Heff) | Dual-Sense Polarized Bands | fr (GHz) or CP Band of Resonance | 10 dB RL Bandwidth (MHz) | 3 dB AR Bandwidth (MHz) | Gain (dBi) |
---|---|---|---|---|---|---|
A ring-shaped patch along with an inverted L-strip and cylindrical DRA [126] | 0.475λ × 0.475λ × 0.098λ | LP and CP | 2.9–3.93 | 1030 | 250 | 4 |
Comprises of an asymmetrical square ring-shaped printed line and a rectangular DR. The square ring is responsible for creating dual-sense radiation [127] | 0.68λ × 0.57λ × 0.11λ | LHCP and RHCP | 3.28–5.78 | 2500 | 470 and 300 | 3.1 |
Modified hexagonal DR is top-loaded with a square microstrip ring [128] | 0.44λ × 0.51λ × 0.152λ | LHCP and RHCP | 1.75–2.03, 2.23–2.96, and 3.65–3.76 | 280, 730 and 110 | 70, 150 and 80 | 5, 5.28 and 2.36 |
The asymmetric-slot radiator is fed by an L-shaped stub with the CPW line combined with rectangular-DR. Dual sense CP is obtained using a rectangular-DR over asymmetric rectangular-slot radiator with an L-shaped feed line [129] | 0.446λ × 0.446λ × 0.149λ | LHCP and RHCP | 1.75–2.73 | 980 | 860 | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nalanagula, R.; Darimireddy, N.K.; Kumari, R.; Park, C.-W.; Reddy, R.R. Circularly Polarized Hybrid Dielectric Resonator Antennas: A Brief Review and Perspective Analysis. Sensors 2021, 21, 4100. https://doi.org/10.3390/s21124100
Nalanagula R, Darimireddy NK, Kumari R, Park C-W, Reddy RR. Circularly Polarized Hybrid Dielectric Resonator Antennas: A Brief Review and Perspective Analysis. Sensors. 2021; 21(12):4100. https://doi.org/10.3390/s21124100
Chicago/Turabian StyleNalanagula, Rajasekhar, Naresh K. Darimireddy, Runa Kumari, Chan-Wang Park, and R. Ramana Reddy. 2021. "Circularly Polarized Hybrid Dielectric Resonator Antennas: A Brief Review and Perspective Analysis" Sensors 21, no. 12: 4100. https://doi.org/10.3390/s21124100
APA StyleNalanagula, R., Darimireddy, N. K., Kumari, R., Park, C. -W., & Reddy, R. R. (2021). Circularly Polarized Hybrid Dielectric Resonator Antennas: A Brief Review and Perspective Analysis. Sensors, 21(12), 4100. https://doi.org/10.3390/s21124100