An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer’s Disease
Abstract
:1. Introduction
- We propose a new ResNet model where a new Mish activation function is selected in the ResNet-50 backbone to replace the Relu function;
- The STN is introduced between the input layer and the improved ResNet-50 backbone. This enhances the spatial invariance of the model;
- A non-local attention mechanism is introduced between the fourth and fifth stages of the improved ResNet-50 backbone.
2. Related Work
3. Materials and Methods
3.1. Data Selection
3.2. Deep Residual Neural Network
3.3. Spatial Transformer Networks (STN)
3.4. Non-Local Attention Mechanism
3.5. Proposed Method
- (1)
- The experiment uses two-dimensional slices as training data, so it is necessary to slice the three-dimensional MRI coronal plane. In order to ensure that the input image size of the classifier is consistent, this experiment unifies these slices into a size of 224 × 224. The experiment uses the CAT12 toolkit of the SPM12 software to preprocess the images. Image preprocessing includes format conversion, skull stripping, grayscale normalization, MRI slicing, and uniform sizing, etc. The detailed preprocessing process is shown in Figure 6;
- (2)
- The Keras experimental platform was built and the STN + ResNet + attention network model was designed;
- (3)
- The K-fold (K = 5) cross validation method was used to randomly divide the dataset, with 80% used as the training set and 20% used as the test set;
- (4)
- The training set was input into the network for training and the training results were obtained;
- (5)
- The optimal model parameters were saved and tested in the model using the test set data.
4. Experimental Results and Discussion
- TPi: the prediction is category i, the reality is category i.
- TNi: the prediction is other classes of category i, the reality is other classes of category i.
- FPi: the prediction is category i, the reality is other classes of category i.
- FNi: the prediction is other classes of category i, the reality is category i.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lukiw, W.J.; Vergallo, A.; Lista, S.; Hampel, H.; Zhao, Y. Biomarkers for Alzheimer’s Disease (AD) and the Application of Precision Medicine. J. Pers. Med. 2020, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.N.; Blennow, K. Peripheral Biomarkers for Alzheimer’s Disease: Update and Progress. Neurol. Ther. 2019, 8, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Husain, M. Blood tests to screen for Alzheimer’s disease. Brain 2021, 144, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Rma, B.; At, C.; Rrc, D. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clin. Biochem. 2019, 73, 26–31. [Google Scholar]
- Delmastro, F.; Di Martino, F.; Dolciotti, C. Cognitive Training and Stress Detection in MCI Frail Older People Through Wearable Sensors and Machine Learning. IEEE Access 2020, 8, 65573–65590. [Google Scholar] [CrossRef]
- Liu, S.Q.; Liu, S.D.; Cai, W.D. Early diagnosis of Alzheimer’s disease with deep learning. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 1015–1018. [Google Scholar]
- Brugnolo, A.; Girtler, N.; Pardini, M.; Doglione, E.; Orso, B.; Massa, F.; Donegani, M.I.; Bauckneht, M.; Morbelli, S.; Arnaldi, D.; et al. Brain Resources: How Semantic Cueing Works in Mild Cognitive Impairment due to Alzheimer’s Disease (MCI-AD). Diagnostics 2021, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, Y.; Zheng, W.; Huang, K.; Zhou, L.; Hu, X.; Yao, Z.; Hu, B. A novel conversion prediction method of MCI to AD based on longitudinal dynamic morphological features using ADNI structural MRIs. J. Neurol. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Counts, S.E.; Ikonomovic, M.D.; Mercado, N.; Vega, I.E.; Mufson, E.J. Biomarkers for the Early Detection and Progression of Alzheimer’s Disease. Neurotherapeutics 2017, 14, 35–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampel, H. Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 2010, 9, 560–574. [Google Scholar] [CrossRef]
- Zhao, A.; Li, Y.; Yan, Y.; Qiu, Y.; Li, B.; Xu, W.; Wang, Y.; Liu, J.; Deng, Y. Increased prediction value of biomarker combinations for the conversion of mild cognitive impairment to Alzheimer’s dementia. Transl. Neurodegener. 2020, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lonie, J.A.; Tierney, K.M.; Ebmeier, K.P. Screening for mild cognitive impairment: A systematic review. Int. J. Geriatr. Psychiatry 2009, 24, 902–915. [Google Scholar] [CrossRef]
- Choe, Y.M.; Lee, B.C.; Choi, I.-G.; Suh, G.-H.; Lee, D.Y.; Kim, J.W. MMSE Subscale Scores as Useful Predictors of AD Conversion in Mild Cognitive Impairment. Neuropsychiatr. Dis. Treat. 2020, 16, 1767–1775. [Google Scholar] [CrossRef]
- Milian, M.; Leiherr, A.-M.; Straten, G.; Müller, S.; Leyhe, T.; Eschweiler, G.W. The Mini-Cog versus the Mini-Mental State Examination and the Clock Drawing Test in daily clinical practice: Screening value in a German Memory Clinic. Int. Psychogeriatr. 2011, 24, 766–774. [Google Scholar] [CrossRef]
- Inmaculada, L.F.; Inmaculada, C.I.; Aitana, S.E. Transmembrane Amyloid-Related Proteins in CSF as Potential Biomarkers for Alzheimer’s Disease. Front. Neurol. 2015, 6, 125. [Google Scholar]
- Delaby, C.; Muñoz, L.; Torres, S. Impact of CSF storage volume on the analysis of Alzheimer’s disease biomarkers on an automated platform. Clin. Chim. Acta 2019, 490, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, R.; Mårtensson, G.; Poulakis, K.; Rodriguez-Vieitez, E.; Grothe, M.; Nordberg, A.K.; Ferreira, D.; Westman, E. Towards harmonizing subtyping methods for PET and MRI studies of Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, e042807. [Google Scholar] [CrossRef]
- Ottoy, J.; Niemantsverdriet, E.; Verhaeghe, J.; De Roeck, E.; Struyfs, H.; Somers, C.; Wyffels, L.; Ceyssens, S.; Van Mossevelde, S.; Bossche, T.V.D.; et al. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18F-FDG-PET imaging. NeuroImage Clin. 2019, 22, 101771. [Google Scholar] [CrossRef] [PubMed]
- Pagani, M.; Nobili, F.; Morbelli, S.; Arnaldi, D.; Giuliani, A.; Öberg, J.; Girtler, N.; Brugnolo, A.; Picco, A.; Bauckneht, M.; et al. Early identification of MCI converting to AD: A FDG PET study. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2042–2052. [Google Scholar] [CrossRef]
- Choi, B.-K.; Madusanka, N.; Choi, H.-K.; So, J.-H.; Kim, C.-H.; Park, H.-G.; Bhattacharjee, S.; Prakash, D. Convolutional Neural Network-based MR Image Analysis for Alzheimer’s Disease Classification. Curr. Med. Imaging Rev. 2020, 16, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Lin, L. Effects of mind body exercise on brain structure and function a systematic review on MRI studies. Brain Sci. 2021, 11, 205. [Google Scholar]
- Ren, F.; Yang, C.; Qiu, Q.; Zeng, N.; Cai, C.; Hou, C.; Zou, Q. Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer’s Disease Classification. IEEE Access 2019, 7, 181423–181433. [Google Scholar] [CrossRef]
- Sumanth, S.; Suresh, A. Survey on identification of Alzheimer disease using magnetic resonance imaging (MRI) images. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 3564–3570. [Google Scholar]
- D’Angelo, G.; Palmieri, F. GGA: A modified Genetic Algorithm with Gradient-based Local Search for Solving Constrained Optimization Problems. Inf. Sci. 2020, 547, 136–162. [Google Scholar] [CrossRef]
- Mehmood, A.; Maqsood, M.; Bashir, M.; Shuyuan, Y. A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease. Brain Sci. 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shoukry, S.; Rassem, T.H.; Makbol, N.M. Alzheimer’s Diseases Detection by Using Deep Learning Algorithms: A Mini-Review. IEEE Access 2020, 8, 77131–77141. [Google Scholar] [CrossRef]
- Amini, M.; Pedram, M.; Moradi, A.; Ouchani, M. Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN). Comput. Math. Methods Med. 2021, 2021, 5514839. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhou, P. Representation and Classification of Auroral Images Based on Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 523–534. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Zhao, P.; Liu, R.; Liu, J.; Miao, Q. Malware Detection Algorithm Based on the Attention Mechanism and ResNet. Chin. J. Electron. 2020, 29, 1054–1060. [Google Scholar] [CrossRef]
- Yang, M.; Li, D.; Zhang, W. Spatial non-local attention for thoracic disease diagnosis and visualisation in weakly supervised learning. IET Image Process. 2019, 13, 1922–1930. [Google Scholar] [CrossRef]
- Xiao, R.; Cui, X.; Qiao, H.; Zheng, X.; Zhang, Y.; Zhang, C.; Liu, X. Early diagnosis model of Alzheimer’s disease based on sparse logistic regression with the generalized elastic net. Biomed. Signal Process. Control 2021, 66, 102362. [Google Scholar] [CrossRef]
- Fortea, J.; Vilaplana, E.; Carmona-Iragui, M. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: A cross-sectional study. Lancet 2020, 395, 1988–1997. [Google Scholar] [CrossRef]
- Cid, R.C.; Crocco, E.; Kitaigorodsky, M.; Beaufils, L.; Peña, P.; Grau, G.; Visser, U.; Loewenstein, D. A Novel Computerized Cognitive Stress Test to Detect Mild Cognitive Impairment. J. Prev. Alzheimer’s Dis. 2021, 8, 135–141. [Google Scholar] [CrossRef]
- Suda, S.; Muraga, K.; Ishiwata, A.; Nishimura, T.; Aoki, J.; Kanamaru, T.; Suzuki, K.; Sakamoto, Y.; Katano, T.; Nagai, K.; et al. Early Cognitive Assessment Following Acute Stroke: Feasibility and Comparison between Mini-Mental State Examination and Montreal Cognitive Assessment. J. Stroke Cerebrovasc. Dis. 2020, 29, 104688. [Google Scholar] [CrossRef] [PubMed]
- Brodaty, H.; Moore, C.M. The Clock Drawing Test for dementia of the Alzheimer’s type: A comparison of three scoring methods in a memory disorders clinic. Int. J. Geriatr. Psychiatry 1997, 12, 619–627. [Google Scholar] [CrossRef]
- Pozueta, A.; Rodríguez-Rodríguez, E.; Vazquez-Higuera, J.L. Detection of early Alzheimer’s disease in MCI patients by the combination of MMSE and an episodic memory test. BMC Neurol. 2011, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainal, N.H.; Silva, E.; Lim, L.L. Psychometric Properties of Alzheimer’s Disease Assessment Scale-Cognitive Subscale for Mild Cognitive Impairment and Mild Alzheimer’s Disease Patients in an Asian Context. Ann. Acad. Med. Singap. 2016, 45, 273. [Google Scholar] [PubMed]
- Roman, F.; Iturry, M.; Rojas, G.; Barceló, E.; Buschke, H.; Allegri, R.F. Validation of the Argentine version of the Memory Binding Test (MBT) for Early Detection of Mild Cognitive Impairment. Dement. Neuropsychol. 2016, 10, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Carlew, A.; Goette, W.; Womack, K. A-02 Comparing Rate of Change in MoCA and MMSE Scores over Time in an MCI and AD sample. Arch. Clin. Neuropsychol. 2020, 35, 6. [Google Scholar]
- Solje, E.; Benussi, A.; Buratti, E.; Remes, A.; Haapasalo, A.; Borroni, B. State-of-the-Art Methods and Emerging Fluid Biomarkers in the Diagnostics of Dementia—A Short Review and Diagnostic Algorithm. Diagnostics 2021, 11, 788. [Google Scholar] [CrossRef]
- Liguori, C.; Paoletti, F.P.; Placidi, F.; Ruffini, R.; Sancesario, G.M.; Eusebi, P.; Mercuri, N.B.; Parnetti, L. CSF Biomarkers for Early Diagnosis of Synucleinopathies: Focus on Idiopathic RBD. Curr. Neurol. Neurosci. Rep. 2019, 19, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, E. CSF biomarkers for the differential diagnosis of Alzheimer’s disease: A large-scale international multicenter study. Alzheimer’s Dement. 2015, 11, 1306–1315. [Google Scholar]
- Geijselaers, S.L.; Aalten, P.; Ramakers, I.H.; De Deyn, P.P.; Heijboer, A.C.; Koek, H.L.; OldeRikkert, M.G.; Papma, J.M.; Reesink, F.E.; Smits, L.L.; et al. Association of Cerebrospinal Fluid (CSF) Insulin with Cognitive Performance and CSF Biomarkers of Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 61, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Gs, A.; Sb, B. AD biomarker discovery in CSF and in alternative matrices. Clin. Biochem. 2019, 72, 52–57. [Google Scholar]
- Fossati, S.; Cejudo, J.R.; Debure, L. Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Shang, J.; Shi, X.; Yamashita, T.; Hishikawa, N.; Takemoto, M.; Morihara, R.; Nakano, Y.; Ohta, Y.; Deguchi, K.; et al. A New Serum Biomarker Set to Detect Mild Cognitive Impairment and Alzheimer’s Disease by Peptidome Technology. J. Alzheimer’s Dis. 2020, 73, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Nabers, A.; Hafermann, H.; Wiltfang, J. Aβ and tau structure-based biomarkers for a blood- and CSF-based two-step recruitment strategy to identify patients with dementia due to Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 257–263. [Google Scholar] [CrossRef]
- Basheera, S.; Ram, M.S.S. A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Comput. Med. Imaging Graph. 2020, 81, 101713. [Google Scholar] [CrossRef]
- Ji, H.; Liu, Z.; Yan, W.Q.; Klette, R. Early diagnosis of Alzheimer’s disease using deep learning. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2019; pp. 87–91. [Google Scholar]
- Bin Tufail, A.; Ma, Y.-K.; Zhang, Q.-N. Binary Classification of Alzheimer’s Disease Using sMRI Imaging Modality and Deep Learning. J. Digit. Imaging 2020, 33, 1073–1090. [Google Scholar] [CrossRef]
- Subramoniam, M.; Aparna, T.R.; Anurenjan, P.R.; Sreeni, K.G. Deep learning based prediction of Alzheimer’s disease from magnetic resonance images. arXiv 2020, arXiv:2101.04961v1. [Google Scholar]
- Hussain, E.; Hasan, M.; Hassan, S.Z.; Azmi, T.H.; Rahman, A.; Parvez, M.Z. Deep Learning Based Binary Classification for Alzheimer’s Disease Detection Using Brain MRI Images. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 1115–1120. [Google Scholar]
- Li, B.; He, Y. An Improved ResNet Based on the Adjustable Shortcut Connections. IEEE Access 2018, 6, 18967–18974. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl. 2020, 32, 6111–6124. [Google Scholar] [CrossRef]
- Available online: http://adni.loni.usc.edu (accessed on 16 February 2020).
- Liu, M.; Li, F.; Yan, H.; Wang, K.; Ma, Y.; Shen, L.; Xu, M. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. NeuroImage 2020, 208, 116459. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhang, L.; Schaeffer, H. Forward Stability of ResNet and Its Variants. J. Math. Imaging Vis. 2020, 62, 328–351. [Google Scholar] [CrossRef] [Green Version]
- Misra, D. Mish: A self regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Lin, C.H.; Lucey, S. Inverse Compositional Spatial Transformer Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2252–2260. [Google Scholar]
- Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial transformer networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; pp. 2017–2025. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N. Attention Is All You Need. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 5998–6008. [Google Scholar]
- Li, M.; Li, O.; Liu, G.; Zhang, C. An Automatic Modulation Recognition Method with Low Parameter Estimation Dependence Based on Spatial Transformer Networks. Appl. Sci. 2019, 9, 1010. [Google Scholar] [CrossRef] [Green Version]
- Syed, A.T.; Merugu, S.; Koppula, V.K. Plant recognition using spatial transformer network. Int. J. Recent Technol. Eng. 2019, 7, 334–336. [Google Scholar]
- Chen, D.; Chen, P.; Yu, X.; Cao, M.; Jia, T. Deeply-Learned Spatial Alignment for Person Re-Identification. IEEE Access 2019, 7, 143684–143692. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Yu, C. Assisted Diagnosis of Alzheimer’s Disease Based on Deep Learning and Multimodal Feature Fusion. Complexity 2021, 2021, 6626728. [Google Scholar] [CrossRef]
- Xu, M.; Liu, Z.; Wang, Z.; Sun, L.; Liang, Z. The Diagnosis of Alzheimer’s Disease Based on Enhanced Residual Neutral Network. In Proceedings of the 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Guilin, China, 17–19 October 2019; pp. 405–411. [Google Scholar]
- Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An Empirical Study of Spatial Attention Mechanisms in Deep Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 6687–6696. [Google Scholar]
- D’Angelo, G.; Palmieri, F. Discovering genomic patterns in SARS-CoV-2 variants. Int. J. Intell. Syst. 2020, 35, 1680–1698. [Google Scholar] [CrossRef]
Dataset | ADNI | ||
---|---|---|---|
Diagnosis | NC | MCI | AD |
Number of samples | 255 | 205 | 55 |
Number of female samples | 127 | 103 | 27 |
Number of male samples | 128 | 102 | 28 |
Age | 70.6 ± 5.1 | 73.8 ± 7.5 | 78.9 ± 8.6 |
ADAS-Cog | <12 | 7–17 | 12–29 |
MMSE | 24–30 | 23–30 | 20–26 |
Layer Name | Output Size | Layer |
---|---|---|
STN | 224 × 224 | Localization network, grid generator, sampler |
Conv1 | 112 × 112 | 7 × 7, 64, stride 2 |
Max pooling | 56 × 56 | 3 × 3, stride 2 |
Stage 2 | 56 × 56 | , Mish |
Stage 3 | 28 × 28 | , Mish |
Stage 4 | 14 × 14 | , Mish |
Non-local attention module | 14 × 14 | Attention × 1 |
Stage 5 | 7 × 7 | , Mish |
Average pooling | 1 × 1 | 7 × 7, stride 1 |
FC, softmax | 1000-d |
Confusion Matrix | Predicted Class | Recall | ||||
---|---|---|---|---|---|---|
NC | MCI | AD | ||||
Actual Class | NC | 51 | 0 | 0 | 1.000 | Recallmacro = 0.953 |
MCI | 1 | 39 | 1 | 0.951 | ||
AD | 0 | 1 | 10 | 0.909 | ||
Precision | 0.981 | 0.975 | 0.909 | Acc = 0.971 | F1macro = 0.954 | |
Precisionmacro = 0.955 |
Model | Accuracy | Precisionmacro | Recallmacro | F1macro |
---|---|---|---|---|
ResNet50 baseline | 0.913 ± 0.035 | 0.871 ± 0.033 | 0.887 ± 0.032 | 0.879 |
ResNet50 + Mish | 0.932 ± 0.032 | 0.893 ± 0.030 | 0.924 ± 0.028 | 0.908 |
STN + ResNet50 + Mish | 0.951 ± 0.021 | 0.940 ± 0.023 | 0.939 ± 0.021 | 0.939 |
Proposed method | 0.971 ± 0.016 | 0.955 ± 0.015 | 0.953 ± 0.018 | 0.954 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Wang, A.; Wang, W.; Liu, C. An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer’s Disease. Sensors 2021, 21, 4182. https://doi.org/10.3390/s21124182
Sun H, Wang A, Wang W, Liu C. An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer’s Disease. Sensors. 2021; 21(12):4182. https://doi.org/10.3390/s21124182
Chicago/Turabian StyleSun, Haijing, Anna Wang, Wenhui Wang, and Chen Liu. 2021. "An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer’s Disease" Sensors 21, no. 12: 4182. https://doi.org/10.3390/s21124182
APA StyleSun, H., Wang, A., Wang, W., & Liu, C. (2021). An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer’s Disease. Sensors, 21(12), 4182. https://doi.org/10.3390/s21124182