Are Machine Learning Methods the Future for Smoking Cessation Apps?
Abstract
:1. Introduction
2. Common Approaches to the Development of of Smoking Cessation Apps
3. The Use of Passive Data Collection in Smoking Cessation Apps
4. Machine Learning Methods for Auto Intervention: The Future of Smoking Cessation Apps
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Tobacco, Leading Cause of Death, Illness and Impoverishment. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco/ (accessed on 18 June 2021).
- CDC. Smoking Cessation: Fast Facts. 2020. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/cessation/smoking-cessation-fast-facts/index.html (accessed on 18 June 2021).
- Dunbar, M.S.; Scharf, D.; Kirchner, T.; Shiffman, S. Do smokers crave cigarettes in some smoking situations more than others? Situational correlates of craving when smoking. Nicotine Tob. Res. 2010, 12, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Businelle, M.S.; Ma, P.; Kendzor, D.E.; Frank, S.G.; Wetter, D.W.; Vidrine, D.J. Using intensive longitudinal data collected via mobile phone to detect imminent lapse in smokers undergoing a scheduled quit attempt. J. Med Internet Res. 2016, 18, e275. [Google Scholar] [CrossRef]
- Chandra, S.; Shiffman, S.; Scharf, D.M.; Dang, Q.; Shadel, W.G. Daily smoking patterns, their determinants, and implications for quitting. Exp. Clin. Psychopharmacol. 2007, 15, 67. [Google Scholar] [CrossRef]
- Shiffman, S.; Li, X.; Dunbar, M.S.; Tindle, H.A.; Scholl, S.M.; Ferguson, S.G. Does laboratory cue reactivity correlate with real-world craving and smoking responses to cues? Drug Alcohol Depend. 2015, 155, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Shiffman, S.; Dunbar, M.S.; Li, X.; Scholl, S.M.; Tindle, H.A.; Anderson, S.J.; Ferguson, S.G. Smoking patterns and stimulus control in intermittent and daily smokers. PLoS ONE 2014, 9, e89911. [Google Scholar]
- Stevenson, J.G.; Oliver, J.A.; Hallyburton, M.B.; Sweitzer, M.M.; Conklin, C.A.; McClernon, F.J. Smoking environment cues reduce ability to resist smoking as measured by a delay to smoking task. Addict. Behav. 2017, 67, 49–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobashev, G.; Holloway, J.; Solano, E.; Gutkin, B. A Control Theory Model of Smoking. Methods Rep. RTI Press 2017, 2017. [Google Scholar] [CrossRef]
- Statista. Number of Smartphone Users Worldwide from 2016 to 2026. 2021. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 18 June 2021).
- Statista. Smartwatches—Statistics and Facts. 2020. Available online: https://www.statista.com/topics/4762/smartwatches/ (accessed on 18 June 2021).
- Fan, C.; Gao, F. A new approach for smoking event detection using a variational autoencoder and neural decision forest. IEEE Access 2020, 8, 120835–120849. [Google Scholar] [CrossRef]
- Hong, Y.J.; Kim, I.J.; Ahn, S.C.; Kim, H.G. Mobile health monitoring system based on activity recognition using accelerometer. Simul. Model. Pract. Theory 2010, 18, 446–455. [Google Scholar] [CrossRef]
- Kelly, D.; Curran, K.; Caulfield, B. Automatic prediction of health status using smartphone-derived behavior profiles. IEEE J. Biomed. Health Inform. 2017, 21, 1750–1760. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, R.; Zhou, X.; Campbell, A.T. My smartphone knows I am hungry. In Proceedings of the 2014 Workshop on Physical Analytics, Bretton Woods, NH, USA, 16 June 2014; pp. 9–14. [Google Scholar]
- Pulantara, I.W.; Parmanto, B.; Germain, A. Development of a Just-in-Time adaptive mHealth intervention for insomnia: Usability study. JMIR Hum. Factors 2018, 5, e21. [Google Scholar] [CrossRef] [Green Version]
- McClure, J.B.; Hartzler, A.L.; Catz, S.L. Design considerations for smoking cessation apps: Feedback from nicotine dependence treatment providers and smokers. JMIR mHealth uHealth 2016, 4, e17. [Google Scholar] [CrossRef]
- Stevens, D.J.; Jackson, J.A.; Howes, N.; Morgan, J. Obesity surgery smartphone apps: A review. Obes. Surg. 2014, 24, 32–36. [Google Scholar] [CrossRef]
- Tregarthen, J.P.; Lock, J.; Darcy, A.M. Development of a smartphone application for eating disorder self-monitoring. Int. J. Eat. Disord. 2015, 48, 972–982. [Google Scholar] [CrossRef]
- Rosser, B.A.; Eccleston, C. Smartphone applications for pain management. J. Telemed. Telecare 2011, 17, 308–312. [Google Scholar] [CrossRef]
- Walsh, J.C.; Groarke, J.M. Integrating behavioral science with mobile (mhealth) technology to optimize health behavior change interventions. Eur. Psychol. 2019, 24, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, R.; Osmani, V.; Mayora, O. Smartphone app usage as a predictor of perceived stress levels at workplace. In Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Istanbul, Turkey, 20–23 May 2015; pp. 225–228. [Google Scholar]
- Naughton, F.; Hopewell, S.; Lathia, N.; Schalbroeck, R.; Brown, C.; Mascolo, C.; McEwen, A.; Sutton, S. A context-sensing mobile phone app (Q sense) for smoking cessation: A mixed-methods study. JMIR mHealth uHealth 2016, 4, e106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubhi, H.K.; Michie, S.; Kotz, D.; van Schayck, O.C.; Selladurai, A.; West, R. Characterising smoking cessation smartphone applications in terms of behaviour change techniques, engagement and ease-of-use features. Transl. Behav. Med. 2016, 6, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Bricker, J.B.; Mull, K.E.; Kientz, J.A.; Vilardaga, R.; Mercer, L.D.; Akioka, K.J.; Heffner, J.L. Randomized, controlled pilot trial of a smartphone app for smoking cessation using acceptance and commitment therapy. Drug Alcohol Depend. 2014, 143, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClernon, F.J.; Roy Choudhury, R. I am your smartphone, and I know you are about to smoke: The application of mobile sensing and computing approaches to smoking research and treatment. Nicotine Tob. Res. 2013, 15, 1651–1654. [Google Scholar] [CrossRef]
- Abroms, L.C.; Westmaas, J.L.; Bontemps-Jones, J.; Ramani, R.; Mellerson, J. A content analysis of popular smartphone apps for smoking cessation. Am. J. Prev. Med. 2013, 45, 732–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskins, B.L.; Lesperance, D.; Gibbons, P.; Boudreaux, E.D. A systematic review of smartphone applications for smoking cessation. Transl. Behav. Med. 2017, 7, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, J.; Berli, C.; Schwaninger, P.; Scholz, U. Smoking cessation with smartphone applications (SWAPP): Study protocol for a randomized controlled trial. BMC Public Health 2019, 19, 1400. [Google Scholar] [CrossRef] [PubMed]
- Ubhi, H.K.; Michie, S.; Kotz, D.; Wong, W.C.; West, R. A mobile app to aid smoking cessation: Preliminary evaluation of SmokeFree28. J. Med. Internet Res. 2015, 17, e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Lin, Y.; Zheng, Y.; Liu, Z.; Chang, C. Design, development and randomised controlled trial of a smartphone application,‘QinTB’, for smoking cessation in tuberculosis patients: Study protocol. BMJ Open 2019, 9, e031204. [Google Scholar] [CrossRef] [Green Version]
- Masaki, K.; Tateno, H.; Kameyama, N.; Morino, E.; Watanabe, R.; Sekine, K.; Ono, T.; Satake, K.; Suzuki, S.; Nomura, A.; et al. Impact of a novel smartphone app (CureApp Smoking Cessation) on nicotine dependence: Prospective single-arm interventional pilot study. JMIR mHealth uHealth 2019, 7, e12694. [Google Scholar] [CrossRef]
- Paige, S.R.; Alber, J.M.; Stellefson, M.L.; Krieger, J.L. Missing the mark for patient engagement: mHealth literacy strategies and behavior change processes in smoking cessation apps. Patient Educ. Couns. 2018, 101, 951–955. [Google Scholar] [CrossRef]
- Regmi, K.; Kassim, N.; Ahmad, N.; Tuah, N.A. Effectiveness of mobile apps for smoking cessation: A review. Tob. Prev. Cessat. 2017, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Vilardaga, R.; Casellas-Pujol, E.; McClernon, J.F.; Garrison, K.A. Mobile applications for the treatment of tobacco use and dependence. Curr. Addict. Rep. 2019, 6, 86–97. [Google Scholar] [CrossRef]
- Shiffman, S.; Hufford, M.; Hickcox, M.; Paty, J.A.; Gnys, M.; Kassel, J.D. Remember that? A comparison of real-time versus retrospective recall of smoking lapses. J. Consult. Clin. Psychol. 1997, 65, 292. [Google Scholar] [CrossRef]
- Hébert, E.T.; Stevens, E.M.; Frank, S.G.; Kendzor, D.E.; Wetter, D.W.; Zvolensky, M.J.; Buckner, J.D.; Businelle, M.S. An ecological momentary intervention for smoking cessation: The associations of just-in-time, tailored messages with lapse risk factors. Addict. Behav. 2018, 78, 30–35. [Google Scholar] [CrossRef]
- Koslovsky, M.D.; Hébert, E.T.; Swartz, M.D.; Chan, W.; Leon-Novelo, L.; Wilkinson, A.V.; Kendzor, D.E.; Businelle, M.S. The time-varying relations between risk factors and smoking before and after a quit attempt. Nicotine Tob. Res. 2018, 20, 1231–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, K.L.; Twesten, J.E.; Stern, A.; Augustson, E.M. Level of Alcohol Consumption and Successful Smoking Cessation. Nicotine Tob. Res. 2019, 21, 1058–1064. [Google Scholar] [CrossRef]
- Cambron, C.; Haslam, A.K.; Baucom, B.R.; Lam, C.; Vinci, C.; Cinciripini, P.; Li, L.; Wetter, D.W. Momentary precipitants connecting stress and smoking lapse during a quit attempt. Health Psychol. 2019, 38, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, T.R.; Cantrell, J.; Anesetti-Rothermel, A.; Ganz, O.; Vallone, D.M.; Abrams, D.B. Geospatial exposure to point-of-sale tobacco: Real-time craving and smoking-cessation outcomes. Am. J. Prev. Med. 2013, 45, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Webb, T.L.; Chang, B.P.; Benn, Y. ‘The Ostrich Problem’: Motivated avoidance or rejection of information about goal progress. Soc. Personal. Psychol. Compass 2013, 7, 794–807. [Google Scholar] [CrossRef]
- Stankevich, E.; Paramonov, I.; Timofeev, I. Mobile phone sensors in health applications. In Proceedings of the 12th Conference of Open Innovations Association (FRUCT), Oulu, Finland, 5–9 November 2012; pp. 1–6. [Google Scholar]
- Acien, A.; Morales, A.; Vera-Rodriguez, R.; Fierrez, J. Smartphone sensors for modeling human-computer interaction: General outlook and research datasets for user authentication. In Proceedings of the IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 1273–1278. [Google Scholar]
- Meegahapola, L.; Gatica-Perez, D. Smartphone Sensing for the Well-being of Young Adults: A Review. IEEE Access 2020, 9, 3374–3399. [Google Scholar] [CrossRef]
- Burgdorf, A.; Güthe, I.; Jovanović, M.; Kutafina, E.; Kohlschein, C.; Bitsch, J.Á.; Jonas, S.M. The mobile sleep lab app: An open-source framework for mobile sleep assessment based on consumer-grade wearable devices. Comput. Biol. Med. 2018, 103, 8–16. [Google Scholar] [CrossRef]
- Li, P.; Abdel-Aty, M.; Cai, Q.; Islam, Z. A Deep Learning Approach to Detect Real-Time Vehicle Maneuvers Based on Smartphone Sensors. IEEE Trans. Intell. Transp. Syst. 2020. [Google Scholar] [CrossRef]
- Milette, G.; Stroud, A. Professional Android Sensor Programming; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Nagpal, V. Android Sensor Programming By Example; Packt Publishing Ltd.: Birmingham, UK, 2016. [Google Scholar]
- Cornet, V.P.; Holden, R.J. Systematic review of smartphone-based passive sensing for health and wellbeing. J. Biomed. Inform. 2018, 77, 120–132. [Google Scholar] [CrossRef]
- Capon, H.; Hall, W.; Fry, C.; Carter, A. Realising the technological promise of smartphones in addiction research and treatment: An ethical review. Int. J. Drug Policy 2016, 36, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Trifan, A.; Oliveira, M.; Oliveira, J.L. Passive sensing of health outcomes through smartphones: Systematic review of current solutions and possible limitations. JMIR mHealth uHealth 2019, 7, e12649. [Google Scholar] [CrossRef] [PubMed]
- Ploderer, B.; Smith, W.; Pearce, J.; Borland, R. A mobile app offering distractions and tips to cope with cigarette craving: A qualitative study. JMIR mHealth uHealth 2014, 2, e23. [Google Scholar] [CrossRef] [Green Version]
- Stoner, S.A.; Hendershot, C.S. A randomized trial evaluating an mHealth system to monitor and enhance adherence to pharmacotherapy for alcohol use disorders. Addict. Sci. Clin. Pract. 2012, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Ceja, E.; Osmani, V.; Mayora, O. Automatic Stress Detection in Working Environments From Smartphones’ Accelerometer Data: A First Step. IEEE J. Biomed. Health Inform. 2016, 20, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, G.M.; Gosling, S.D.; Wang, R.; Chen, F.; Chen, Z.; Campbell, A.T. Patterns of behavior change in students over an academic term: A preliminary study of activity and sociability behaviors using smartphone sensing methods. Comput. Hum. Behav. 2017, 67, 129–138. [Google Scholar] [CrossRef]
- Santani, D.; Labhart, F.; Landolt, S.; Kuntsche, E.; Gatica-Perez, D.; Gatica-Perez, D. DrinkSense: Characterizing youth drinking behavior using smartphones. IEEE Trans. Mob. Comput. 2018, 17, 2279–2292. [Google Scholar] [CrossRef] [Green Version]
- Businelle, M.S.; Walters, S.T.; Mun, E.Y.; Kirchner, T.R.; Hébert, E.T.; Li, X. Reducing drinking among people experiencing homelessness: Protocol for the development and testing of a just-in-time adaptive intervention. JMIR Res. Protoc. 2020, 9, e15610. [Google Scholar] [CrossRef]
- Suffoletto, B.; Gharani, P.; Chung, T.; Karimi, H. Using phone sensors and an artificial neural network to detect gait changes during drinking episodes in the natural environment. Gait Posture 2018, 60, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Chung, T.; Ferreira, D.; Dey, A.K.; Suffoletto, B. Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions. Addict. Behav. 2018, 83, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef]
- Moon, S.S.; Kang, S.Y.; Jitpitaklert, W.; Kim, S.B. Decision tree models for characterizing smoking patterns of older adults. Expert Syst. Appl. 2012, 39, 445–451. [Google Scholar] [CrossRef]
- Mak, K.K.; Lee, K.; Park, C. Applications of machine learning in addiction studies: A systematic review. Psychiatry Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.M.; Tom, M.A.; LaPlante, D.A.; Shaffer, H.J. Using opinions and knowledge to identify natural groups of gambling employees. J. Gambl. Stud. 2015, 31, 1753–1766. [Google Scholar] [CrossRef]
- Sun, J.; Bi, J.; Chan, G.; Oslin, D.; Farrer, L.; Gelernter, J.; Kranzler, H.R. Improved methods to identify stable, highly heritable subtypes of opioid use and related behaviors. Addict. Behav. 2012, 37, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Koslovsky, M.D.; Swartz, M.D.; Chan, W.; Leon-Novelo, L.; Wilkinson, A.V.; Kendzor, D.E.; Businelle, M.S. Bayesian variable selection for multistate Markov models with interval-censored data in an ecological momentary assessment study of smoking cessation. Biometrics 2018, 74, 636–644. [Google Scholar] [CrossRef]
- Dumortier, A.; Beckjord, E.; Shiffman, S.; Sejdić, E. Classifying smoking urges via machine learning. Comput. Methods Programs Biomed. 2016, 137, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, J.; Zhang, Z.; Huang, J. Prediction of Daily Smoking Behavior Based on Decision Tree Machine Learning Algorithm. In Proceedings of the IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; pp. 330–333. [Google Scholar]
- Coughlin, L.N.; Tegge, A.N.; Sheffer, C.E.; Bickel, W.K. A machine-learning approach to predicting smoking cessation treatment outcomes. Nicotine Tob. Res. 2020, 22, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Abo-Tabik, M.; Costen, N.; Darby, J.; Benn, Y. Decision Tree Model of Smoking Behaviour. In Proceedings of the IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 1746–1753. [Google Scholar]
- Gavankar, S.S.; Sawarkar, S.D. Eager decision tree. In Proceedings of the 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017; pp. 837–840. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Angrisano, A.; Bernardi, M.L.; Cimitile, M.; Gaglione, S.; Vultaggio, M. Identification of walker identity using smartphone sensors: An experiment using ensemble learning. IEEE Access 2020, 8, 27435–27447. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahid, M.; Ahmed, F.; Javaid, N.; Abbasi, R.A.; Zainab Kazmi, H.S.; Javaid, A.; Bilal, M.; Akbar, M.; Ilahi, M. Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in smart grids. Electronics 2019, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Abo-Tabik, M.; Costen, N.; Darby, J.; Benn, Y. Towards a smart smoking cessation app: A 1D-CNN model predicting smoking events. Sensors 2020, 20, 1099. [Google Scholar] [CrossRef] [Green Version]
- Benouis, M.; Abo-Tabik, M.; Benn, Y.; Salmon, O.; Barret-Chapman, A.; Costen, N. Behavioural Smoking Identification via Hand-Movement Dynamics. In Proceedings of the IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 1734–1739. [Google Scholar]
- Skinner, A.L.; Stone, C.J.; Doughty, H.; Munafò, M.R. StopWatch: The preliminary evaluation of a smartwatch-based system for passive detection of cigarette smoking. Nicotine Tob. Res. 2019, 21, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Cole, C.A.; Anshari, D.; Lambert, V.; Thrasher, J.F.; Valafar, H. Detecting smoking events using accelerometer data collected via smartwatch technology: Validation study. JMIR mHealth uHealth 2017, 5, e189. [Google Scholar] [CrossRef] [Green Version]
- Schick, R.S.; Kelsey, T.W.; Marston, J.; Samson, K.; Humphris, G.W. MapMySmoke: Feasibility of a new quit cigarette smoking mobile phone application using integrated geo-positioning technology, and motivational messaging within a primary care setting. Pilot Feasibility Stud. 2018, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Davagdorj, K.; Lee, J.S.; Pham, V.H.; Ryu, K.H. A comparative analysis of machine learning methods for class imbalance in a smoking cessation intervention. Appl. Sci. 2020, 10, 3307. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. LSTM Can Solve Hard Long Time Lag Problems. In Proceedings of the 9th International Conference on Neural Information Processing Systems, Denver, CO, USA, 2–5 December 1996; MIT Press: Cambridge, MA, USA, 1996; pp. 473–479. [Google Scholar]
- Singh, D.; Merdivan, E.; Psychoula, I.; Kropf, J.; Hanke, S.; Geist, M.; Holzinger, A. Human activity recognition using recurrent neural networks. In Proceedings of the International Cross-Domain Conference for Machine Learning and Knowledge Extraction, Reggio, Italy, 29 August–1 September 2017; pp. 267–274. [Google Scholar]
- Chen, Y.; Zhong, K.; Zhang, J.; Sun, Q.; Zhao, X. LSTM networks for mobile human activity recognition. In Proceedings of the International Conference on Artificial Intelligence: Technologies and Applications, Bangkok, Thailand, 24–25 January 2016; pp. 50–53. [Google Scholar]
- Yildirim, O.; Baloglu, U.B.; Tan, R.S.; Ciaccio, E.J.; Acharya, U.R. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput. Methods Programs Biomed. 2019, 176, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.S. Simulation of genetic systems by automatic digital computers I. Introduction. Aust. J. Biol. Sci. 1957, 10, 484–491. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo-Tabik, M.; Benn, Y.; Costen, N. Are Machine Learning Methods the Future for Smoking Cessation Apps? Sensors 2021, 21, 4254. https://doi.org/10.3390/s21134254
Abo-Tabik M, Benn Y, Costen N. Are Machine Learning Methods the Future for Smoking Cessation Apps? Sensors. 2021; 21(13):4254. https://doi.org/10.3390/s21134254
Chicago/Turabian StyleAbo-Tabik, Maryam, Yael Benn, and Nicholas Costen. 2021. "Are Machine Learning Methods the Future for Smoking Cessation Apps?" Sensors 21, no. 13: 4254. https://doi.org/10.3390/s21134254
APA StyleAbo-Tabik, M., Benn, Y., & Costen, N. (2021). Are Machine Learning Methods the Future for Smoking Cessation Apps? Sensors, 21(13), 4254. https://doi.org/10.3390/s21134254