Evaluation of ECOSTRESS Thermal Data over South Florida Estuaries
Abstract
:1. Introduction
2. Data and Methods
2.1. In Situ Data and Satellite Data
2.1.1. In Situ Data
2.1.2. ECOSTRESS
2.1.3. MODIS
2.2. Evaluation Method
2.2.1. Site Selection
2.2.2. Image Pre-Processing
2.2.3. Matchup Rules for Remotely Sensed SST and In Situ SST
2.2.4. Matchup Rules for Concurrent ECOSTRESS and MODIS
2.3. Statistical Measures
3. Results
3.1. Comparison between ECOSTRESS SST and In Situ SST
3.2. Comparison between ECOSTRESS SST and MODIS SST
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Definition |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
Amax | Major range |
Amin | Minor range |
C0 | Nugget |
C0 + C | Sill |
CB | Chesapeake Bay |
C-MAN | Coastal-Marine Automated Network |
CRE | Caloosahatchee River Estuary |
CV | Coefficient of variation |
E | Emissivity |
ECOSTRESS | ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station |
FB | Florida Bay |
ISS | International Space Station |
JEM-EF | Japanese Experiment Module-Exposed Facility |
LO | Lake Okeechobee |
LPDAAC | Land Process Distribution Active Archive Center |
LST&E | Land Surface Temperature and Emissivity |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSU | Mass storage unit |
NDBC | National Data Buoy Center |
NEΔT | Noise equivalent delta temperatures |
QC | Quality control |
R2 | Coefficient of determination |
RMSD | Root mean square difference |
RSS | Residual Sum of Squares |
SCCF RECON | Sanibel-Captiva Conservation Foundation River, Estuary, and Coastal Observing Network |
SFWMD | South Florida Water Management District |
SST | Sea Surface Temperature |
STDs | Standard deviations |
TDs | Temperature differences |
TES | Temperature Emission Separation |
TIRS | Thermal Infrared Sensor |
VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- Doering, P.H.; Chamberlain, R.H.; Haunert, K.M. Chlorophyll a and its use as an indicator of eutrophication in the Caloosahatchee Estuary, Florida. Fla. Sci. 2006, 69, 51–72. [Google Scholar]
- Turner, R.E.; Rabalais, N.N.; Fry, B.; Atilla, N.; Milan, C.S.; Lee, J.M.; Normandeau, C.; Oswald, T.A.; Swenson, E.M.; Tomasko, D.A. Paleo-indicators and water quality change in the Charlotte Harbor Estuary (Florida). Limnol. Oceanogr. 2006, 51, 518–533. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Barnes, B.B.; Hu, C.; Corcoran, A.A.; Hubbard, K.A.; Muhlbach, E.; Sharp, W.C.; Brand, L.E.; Kelble, C.R. Remote detection of cyanobacteria blooms in an optically shallow subtropical lagoonal estuary using MODIS data. Remote Sens. Environ. 2019, 231, 111227. [Google Scholar] [CrossRef]
- Lirman, D.; Schopmeyer, S.; Manzello, D.; Gramer, L.J.; Precht, W.F.; Muller-Karger, F.; Banks, K.; Barnes, B.; Bartels, E.; Bourque, A.; et al. Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida reef tract and reversed previous survivorship patterns. PLoS ONE 2011, 6, e23047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.J.; Dolan, T.W. Potential impacts of Everglades restoration on lobster and hard bottom communities in the Florida Keys, FL (USA). Estuaries Coast. 2017, 40, 1523–1539. [Google Scholar] [CrossRef]
- Kruczynski, W.L.; McManus, F. Water quality concerns in the Florida Keys: Sources, effects, and solutions. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, 1st ed.; Porter, J., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 827–881. [Google Scholar]
- Peterson, B.J.; Chester, C.M.; Jochem, F.J.; Fourqurean, J.W. Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar. Ecol. Prog. Ser. 2006, 328, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Lapointe, B.E.; Brewton, R.A.; Herren, L.W.; Porter, J.W.; Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: A 3-decade study. Mar. Biol. 2019, 166, 1–31. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Brewton, R.A.; Herren, L.W.; Porter, J.W.; Hu, C.; Cannizzaro, J.P. Sound science, not politics, must inform restoration of Florida Bay and the coral reefs of the Florida Keys. Mar. Biol. 2020, 167, 1–12. [Google Scholar] [CrossRef]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. Ocean. 1985, 90, 11587–11601. [Google Scholar] [CrossRef]
- Minnett, P.J. Radiometric measurements of the sea-surface skin temperature: The competing roles of the diurnal thermocline and the cool skin. Int. J. Remote Sens. 2003, 24, 5033–5047. [Google Scholar] [CrossRef]
- Strong, A.E.; McClain, E.P. Improved ocean surface temperatures from space—Comparisons with drifting buoys. Bull. Am. Meteorol. Soc. 1984, 65, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Wick, G.A.; Emery, W.J.; Schluessel, P. A comprehensive comparison between satellite-measured skin and multichannel sea surface temperature. J. Geophys. Res. Ocean. 1992, 97, 5569–5595. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Fujisada, H.; Sakuma, F.; Ono, A.; Kudoh, M. Design and preflight performance of ASTER instrument protoflight model. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1152–1160. [Google Scholar] [CrossRef]
- Kilic, A.; Allen, R.; Trezza, R.; Ratcliffe, I.; Kamble, B.; Robison, C.; Ozturk, D. Sensitivity of evapotranspiration retrievals from the METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat 7 and 8 surface temperature. Remote Sens. Environ. 2016, 185, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Hook, S.J.; Cawse-Nicholson, K.; Barsi, J.; Radocinski, R.; Hulley, G.C.; Johnson, W.R.; Rivera, G.; Markham, B. In-Flight Validation of the ECOSTRESS, Landsats 7 and 8 Thermal Infrared Spectral Channels Using the Lake Tahoe CA/NV and Salton Sea CA Automated Validation Sites. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1294–1302. [Google Scholar] [CrossRef]
- Silvestri, M.; Romaniello, V.; Hook, S.; Musacchio, M.; Teggi, S.; Buongiorno, M.F. First comparisons of surface temperature estimations between ECOSTRESS, ASTER and Landsat 8 over Italian volcanic and geothermal areas. Remote Sens. 2020, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Muller-Karger, F.; Murch, B.; Myhre, D.; Taylor, J.; Luerssen, R.; Moses, C.; Zhang, C.; Gramer, L.; Hendee, J. Building an automated integrated observing system to detect sea surface temperature anomaly events in the Florida Keys. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1607–1620. [Google Scholar] [CrossRef]
- Li, X.; Pichel, W.; Clemente-Colon, P.; Krasnopolsky, V.; Sapper, J. Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. Int. J. Remote Sens. 2001, 22, 1285–1303. [Google Scholar] [CrossRef]
- Pearce, A.F.; Prata, A.J.; Manning, C.R. Comparison of NOAA/AVHRR-2 sea surface temperatures with surface measurements in coastal waters. Remote Sens. 1989, 10, 37–52. [Google Scholar] [CrossRef]
- Pichel, W.G. Operational production of multichannel sea surface temperatures from NOAA polar satellite AVHRR data. Glob. Planet. Chang. 1991, 4, 173–177. [Google Scholar] [CrossRef]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. Ocean. 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Snyder, J.; Boss, E.; Weatherbee, R.; Thomas, A.C.; Brady, D.; Newell, C. Oyster aquaculture site selection using Landsat 8-Derived Sea surface temperature, turbidity, and chlorophyll a. Front. Mar. Sci. 2017, 4, 190. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Byrne, D.; Weatherbee, R. Coastal sea surface temperature variability from Landsat infrared data. Remote Sens. Environ. 2002, 81, 262–272. [Google Scholar] [CrossRef]
- Fisher, J.B.; Hook, S.; Allen, R.; Anderson, M.; French, A.; Hain, C.; Hulley, G.; Wood, E. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS): Science motivation. In Proceedings of the American Geophysical Union (AGU) Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Fisher, J.B.; Lee, B.; Purdy, A.J.; Halverson, G.H.; Dohlen, M.B.; Cawse-Nicholson, K.; Wang, A.; Anderson, R.G.; Aragon, B.; Arain, M.A.; et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 2020, 56, e2019WR026058. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1304–1315. [Google Scholar] [CrossRef]
- Hulley, G.; Freepartner, R. ECO system Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Mission. In Level 2 Product User Guide; Jet Propulsion Laboratory: Pasadena, CA, USA, 2019. [Google Scholar]
- Brown, O.B.; Minnett, P.J.; Evans, R.; Kearns, E.; Kilpatrick, K.; Kumar, A.; Sikorski, R.; Závody, A. MODIS Infrared Sea Surface Temperature Algorithm Algorithm Theoretical Basis Document Version 2.0; University of Miami: Miami, FL, USA, 1999. [Google Scholar]
- Franz, B. Implementation of SST Processing within the OBPG. Último Acceso 2006, 4, 2014. [Google Scholar]
- Barnes, B.B.; Cannizzaro, J.P.; English, D.C.; Hu, C. Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods. Remote Sens. Environ. 2019, 220, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Hooker, S.B.; Lazin, G.; Zibordi, G.; McLean, S. An evaluation of above-and in-water methods for determining water-leaving radiances. J. Atmos. Ocean. Technol. 2002, 19, 486–515. [Google Scholar] [CrossRef]
- Emery, W.J.; Yu, Y.; Wick, G.A.; Schluessel, P.; Reynolds, R.W. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J. Geophys. Res. Ocean. 1994, 99, 5219–5236. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Gentemann, C.L.; Donlon, C.J.; Stuart-Menteth, A.; Wentz, F.J. Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Minnett, P.J.; Smith, M.; Ward, B. Measurements of the oceanic thermal skin effect. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 861–868. [Google Scholar] [CrossRef]
- Schluessel, P.; Emery, W.J.; Grassl, H.; Mammen, T. On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res. Oceans 1990, 95, 13341–13356. [Google Scholar] [CrossRef]
- Wilson, R.C.; Hook, S.J.; Schneider, P.; Schladow, S.G. Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect. J. Geophys. Res. Atmos. 2013, 118, 10–332. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Barnes, B.B.; Mannino, A.; Heidinger, A.K.; Strabala, K.; Iraci, L.T. Cloud and Sun-glint statistics derived from GOES and MODIS observations over the Intra-Americas Sea for GEO-CAPE mission planning. J. Geophys. Res. Atmos. 2017, 122, 1725–1745. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Wu, T.; Zhong, S. Remote sensing image stripe noise removal: From image decomposition perspective. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7018–7031. [Google Scholar] [CrossRef]
- Rakwatin, P.; Takeuchi, W.; Yasuoka, Y. Stripe noise reduction in MODIS data by combining histogram matching with facet filter. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1844–1856. [Google Scholar] [CrossRef]
- Tsai, F.; Chen, W.W. Striping noise detection and correction of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4122–4131. [Google Scholar] [CrossRef]
- Cawse-Nicholson, K. ECOSTRESS Data Description; Jet Propulsion Laboratory: Pasadena, CA, USA, 2018. [Google Scholar]
- Atkinson, P.M.; Curran, P.J. Choosing an appropriate spatial resolution for remote sensing investigations. PE&RS 1997, 63, 1345–1351. [Google Scholar]
- Davis, C.O.; Kavanaugh, M.; Letelier, R.; Bissett, W.P.; Kohler, D. Spatial and spectral resolution considerations for imaging coastal waters. In Proceedings of the SPIE 6680, Coastal Ocean Remote Sensing, San Diego, CA, USA, 5 October 2007. [Google Scholar] [CrossRef] [Green Version]
- Tandeo, P.; Autret, E.; Chapron, B.; Fablet, R.; Garello, R. SST spatial anisotropic covariances from METOP-AVHRR data. Remote Sens. Environ. 2014, 141, 144–148. [Google Scholar] [CrossRef] [Green Version]
Site Name | Area | Location | Type | Time Range | Time Interval (h) | Bottom Depth (m) | Sources |
---|---|---|---|---|---|---|---|
41064 | CB | 34.21° N, 76.95° W | Moored buoy | 2015.06- | 1.0 | 30.3 | NDBC |
41159 | CB | 34.21° N, 76.95° W | Waverider buoy | 2015.08- | 0.5 | 30.3 | NDBC |
41110 | CB | 34.14° N, 77.72° W | Waverider buoy | 2008.05- | 0.5 | 17.6 | NDBC |
44095 | CB | 35.75° N, 75.33° W | Waverider buoy | 2012.04- | 0.5 | 19.3 | NDBC |
44086 | CB | 36.00° N, 75.42° W | Waverider buoy | 2018.08- | 0.5 | 21.5 | NDBC |
44100 | CB | 36.26° N, 75.59° W | Waverider buoy | 2008.05- | 0.5 | 25.8 | NDBC |
44056 | CB | 36.20° N, 75.72° W | Waverider buoy | 2007.12- | 0.5 | 16.8 | NDBC |
44099 | CB | 36.91° N, 75.72° W | Waverider buoy | 2008.07- | 0.5 | 21.0 | NDBC |
44087 | CB | 37.03° N, 76.15° W | Waverider buoy | 2018.08- | 0.5 | 8.8 | NDBC |
44058 | CB | 37.57° N, 76.26° W | Moored buoy | 2008.11- | 0.2 | 7.6 | NDBC |
44089 | CB | 37.75° N, 75.33° W | Waverider buoy | 2016.06- | 0.5 | 17.7 | NDBC |
TPLM2 | CB | 38.90° N, 76.44° W | C-MAN station | 1985.10- | 1.0 | 4.0 | NDBC |
44063 | CB | 38.96° N, 76.45° W | Moored buoy | 2010.05–2020.07 | 0.2 | 6.8 | NDBC |
44009 | CB | 38.46° N, 74.70° W | 3 m discus buoy | 1984.01- | 1.0 | 27.0 | NDBC |
44042 | CB | 38.03° N, 76.34° W | Moored buoy | 2007.09–2020.06 | 1.0 | 13.4 | NDBC |
L005 | LO | 26.96° N, 80.97° W | Platform-based station | 2020.05- | 0.3 | 2.7 | SFWMD |
LZ40 | LO | 26.90° N, 80.79° W | Platform-based station | 1990.04–2020.08 | 0.5 | 4.3 | SFWMD |
Gulf of Mexico | CRE | 26.44° N, 81.97° W | Moored buoy | 2007.11–2020.02 | 1.0 | 4.9 | SCCF RECON |
Shell Point | CRE | 26.52° N, 82.01° W | Moored buoy | 2008.01- | 0.2 | 0.7 | SCCF RECON |
Fort Myers | CRE | 26.65° N, 81.88° W | Moored buoy | 2007.12- | 1.0 | 2.4 | SCCF RECON |
Beautiful Island | CRE | 26.70° N, 81.81° W | Moored buoy | 2012.11- | 1.0 | 1.1 | SCCF RECON |
LONF1 | FB | 24.84° N, 80.86° W | C-MAN station | 1992.12–2020.08 | 1.0 | 2.7 | NDBC |
GBTF1 | FB | 25.17° N, 80.80° W | Water quality station | 2015.05- | 1.0 | 0.7 | NDBC |
HCEF1 | FB | 25.25° N, 80.44° W | Water quality station | 2015.05- | 1.0 | 0.3 | NDBC |
Satellite | Area | Time | N | R2 | Linear Regression | Bias | RMSD | |
---|---|---|---|---|---|---|---|---|
Slope | Intercept | |||||||
ECOSTRESS | CB | All | 492 | 0.96 | 0.99 | −0.75 | −0.92 | 1.43 |
Day | 249 | 0.93 | 0.99 | −0.69 | −0.86 | 1.39 | ||
Night | 243 | 0.96 | 0.99 | −0.75 | −0.97 | 1.48 | ||
LO | All | 50 | 0.91 | 0.95 | 0.72 | −0.68 | 1.45 | |
Day | 23 | 0.87 | 0.93 | 1.61 | −0.21 | 1.54 | ||
Night | 27 | 0.96 | 0.93 | 0.58 | −1.08 | 1.36 | ||
CRE | All | 117 | 0.92 | 0.93 | 0.77 | −1.07 | 1.61 | |
Day | 49 | 0.94 | 0.94 | 1.06 | −0.39 | 1.13 | ||
Night | 68 | 0.92 | 0.99 | −1.41 | −1.56 | 1.87 | ||
FB | All | 85 | 0.88 | 0.88 | 2.33 | −0.83 | 1.61 | |
Day | 51 | 0.89 | 0.90 | 2.11 | −0.58 | 1.49 | ||
Night | 34 | 0.89 | 0.85 | 2.87 | −1.20 | 1.78 | ||
MODIS | FB | All | 225 | 0.98 | 0.94 | 1.60 | 0.11 | 0.51 |
Day | 96 | 0.97 | 0.92 | 2.21 | 0.19 | 0.62 | ||
Night | 129 | 0.98 | 0.96 | 0.99 | 0.05 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Hu, C. Evaluation of ECOSTRESS Thermal Data over South Florida Estuaries. Sensors 2021, 21, 4341. https://doi.org/10.3390/s21134341
Shi J, Hu C. Evaluation of ECOSTRESS Thermal Data over South Florida Estuaries. Sensors. 2021; 21(13):4341. https://doi.org/10.3390/s21134341
Chicago/Turabian StyleShi, Jing, and Chuanmin Hu. 2021. "Evaluation of ECOSTRESS Thermal Data over South Florida Estuaries" Sensors 21, no. 13: 4341. https://doi.org/10.3390/s21134341
APA StyleShi, J., & Hu, C. (2021). Evaluation of ECOSTRESS Thermal Data over South Florida Estuaries. Sensors, 21(13), 4341. https://doi.org/10.3390/s21134341