Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method Summary and Data Used
2.2. Machine-Learning Algorithms
2.3. Model Training and Assessment
3. Results
3.1. K-Means Algorithm for Data Labeling Based on Bulk Density and Salt Marsh Species
3.2. Band Selection for Modeling Soil Bulk Density
3.3. Soil Bulk Density Prediction
4. Discussion
4.1. Spectral Features for Salt Marsh Soil Bulk Density Prediction
4.2. Machine-Learning Assessment for Soil Bulk Density Classification Using Remotely Sensed Data
4.3. Uncertainties and Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belluco, E.; Camuffo, M.; Ferrari, S.; Modenese, L.; Silvestri, S.; Marani, A.; Marani, M. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens. Environ. 2006, 105, 54–67. [Google Scholar] [CrossRef]
- Reddy, K.R.; DeLaune, R.D. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Laengner, M.L.; Siteur, K.; van der Wal, D. Correction: Laengner, M. L., et al. Trends in the seaward extent of saltmarshes across Europe from long-term satellite data. Remote Sensing 2019, 11, 1653. Remote Sens. 2020, 12, 312. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.; Mo, Y. Salt Marsh Elevation limit determined after subsidence from hydrologic change and hydrocarbon extraction. Remote Sens. 2020, 13, 49. [Google Scholar] [CrossRef]
- Ziegler, S.L.; Baker, R.; Crosby, S.C.; Colombano, D.D.; Barbeau, M.A.; Cebrian, J.; Connolly, R.M.; Deegan, L.A.; Gilby, B.L.; Mallick, D.; et al. Geographic variation in salt marsh structure and function for nekton: A guide to finding commonality across multiple scales. Chesap. Sci. 2021, 1–11. [Google Scholar] [CrossRef]
- Blum, L.K.; Christian, R.R.; Cahoon, D.R.; Wiberg, P.L. Processes influencing marsh elevation change in low- and high-elevation zones of a temperate salt marsh. Chesap. Sci. 2021, 44, 818–833. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.; Zhou, C.; Zhao, J.; Li, B.; Nie, M. Geographic linkages of root traits to salt marsh productivity. Ecosystems 2021, 24, 726–737. [Google Scholar] [CrossRef]
- Fernandez-Nunez, M.; Burningham, H.; Díaz-Cuevas, P.; Ojeda-Zújar, J. Evaluating the response of Mediterranean-Atlantic saltmarshes to sea-level rise. Resources 2019, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuar. Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
- Bertness, M.D.; Ewanchuk, P.J.; Silliman, B. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl. Acad. Sci. USA 2002, 99, 1395–1398. [Google Scholar] [CrossRef] [Green Version]
- Goudkamp, K.; Chin, A. Mangroves and Saltmarshes; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2006. [Google Scholar]
- Taddia, Y.; Pellegrinelli, A.; Corbau, C.; Franchi, G.; Staver, L.; Stevenson, J.; Nardin, W. High-resolution monitoring of tidal systems using UAV: A case study on Poplar Island, MD (USA). Remote Sens. 2021, 13, 1364. [Google Scholar] [CrossRef]
- Liu, L.-A.; Yang, R.-M.; Zhang, X.; Zhu, C.-M.; Zhang, Z.-Q. A mechanistic approach for modeling soil development using remotely sensed data collected from invaded coasts. Remote Sens. 2021, 13, 564. [Google Scholar] [CrossRef]
- Sharp, S.J.; Angelini, C. Predators enhance resilience of a saltmarsh foundation species to drought. J. Ecol. 2021, 109, 975–986. [Google Scholar] [CrossRef]
- Li, J.; Hua, G.; Liu, S.; Liu, X.; Huang, Y.; Shi, Y. Effects of crab disturbance on nitrogen migration and transformation in a coastal tidal flat wetland. Environ. Sci. Pollut. Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Mayer, A.L.; Lopez, R.D. Use of remote sensing to support forest and wetlands policies in the USA. Remote Sens. 2011, 3, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Al-Nasrawi, A.K.M.; Kadhim, A.A.; Shortridge, A.M.; Jones, B.G. Accounting for DEM error in sea level rise assessment within riverine regions; Case study from the Shatt Al-Arab River Region. Environments 2021, 8, 46. [Google Scholar] [CrossRef]
- Evans, B.; Möller, I.; Spencer, T. Topological and morphological controls on morphodynamics of salt marsh interiors. J. Mar. Sci. Eng. 2021, 9, 311. [Google Scholar] [CrossRef]
- Watson, P. Status of mean sea level rise around the USA (2020). GeoHazards 2021, 2, 80–100. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Ayuso, A.T.A.; Rodolfo-Damiano, T.; Marieu, V.; Castelle, B.; Bujan, S.; Rosebery, D.; Michalet, R. The role of physical disturbance for litter decomposition and nutrient cycling in coastal sand dunes. Ecol. Eng. 2021, 162, 106181. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nat. Cell Biol. 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Hikouei, I.S. Characterization of Saltmarsh Soils Using Remote Sensing and Machine Learning Algorithm. In College of Engineering; University of Georgia: Athens, GA, USA, 2020; p. 181. [Google Scholar]
- Hikouei, I.S.; Christian, J.; Kim, S.; Sutter, L.; Durham, S.; Yang, J.; Vickery, C. Use of Random forest model to identify the relationships among vegetative species, salt marsh soil properties, and interstitial water along the Atlantic Coast of Georgia. Infrastructures 2021, 6, 70. [Google Scholar] [CrossRef]
- Guimond, J.; Tamborski, J. Salt marsh hydrogeology: A review. Water 2021, 13, 543. [Google Scholar] [CrossRef]
- Vepraskas, M.J.; Craft, C.B. Wetland Soils: Genesis, Hydrology, Landscapes, and Classification; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Christian, J.; Kim, S.; Durham, S.A.; Sutter, L.; Hikouei, I.S.; House, K. Best Management Practices for Post-Construction Restoration of Rights-of-Way in Saltwater Marshes, Estuaries, and Other Tidally Influenced Areas; Georgia Department of Transportation, Office of Performance-Based Managment and Research: Atlanta, GA, USA, 2020. [Google Scholar]
- Logsdon, S.D.; Karlen, D.L. Bulk density as a soil quality indicator during conversion to no-tillage. Soil Tillage Res. 2004, 78, 143–149. [Google Scholar] [CrossRef]
- Stepniewski, W.; Glinski, J.; Ball, B. Effects of compaction on soil aeration properties. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; pp. 167–189. [Google Scholar]
- Brussaard, L.; Van Faassen, H. Effects of compaction on soil biota and soil biological processes. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; pp. 215–235. [Google Scholar]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.R. Post flood syndrome and vesicular-arbuscular mycorrhizal fungi. J. Prod. Agric. 1998, 11, 200–204. [Google Scholar] [CrossRef]
- USDA. Soil Quality Resource Concerns: Compaction. USDA Natural Resources Conservation Service, 1996. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051594.pdf (accessed on 11 May 2021).
- Blake, G.R.; Hartge, K. Bulk density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- McKenzie, N.; Jacquier, D.; Isbell, R.; Brown, K. Australian Soils and Landscapes; CSIRO Publishing: Collingwood, Australia, 2004. [Google Scholar]
- Asady, G.H.; Smucker, A.J.M. Compaction and root modifications of soil aeration. Soil Sci. Soc. Am. J. 1989, 53, 251–254. [Google Scholar] [CrossRef]
- Håkansson, I.; Lipiec, J. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Tillage Res. 2000, 53, 71–85. [Google Scholar] [CrossRef]
- Aksakal, E.L.; Barik, K.; Angin, I.; Sari, S.; Islam, K. Spatio-temporal variability in physical properties of different textured soils under similar management and semi-arid climatic conditions. Catena 2019, 172, 528–546. [Google Scholar] [CrossRef]
- Morris, J.T.; Barber, D.C.; Callaway, J.C.; Chambers, R.; Hagen, S.C.; Hopkinson, C.S.; Johnson, B.J.; Megonigal, P.; Neubauer, S.C.; Troxler, T.; et al. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Futur. 2016, 4, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, G.; Huang, C.; Li, H. Variation in soil bulk density and hydraulic conductivity within a quasi-circular vegetation patch and bare soil area. J. Soils Sediments 2020, 20, 2019–2030. [Google Scholar] [CrossRef]
- Puttock, A.; Graham, H.A.; Carless, D.; Brazier, R.E. Sediment and nutrient storage in a beaver engineered wetland. Earth Surf. Process. Landforms 2018, 43, 2358–2370. [Google Scholar] [CrossRef]
- Mulder, V.; de Bruin, S.; Schaepman, M.; Mayr, T.; Mulder, V.; De Bruin, S.; Schaepman, M.; Mayr, T. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Silvestri, S.; Marani, M.; Marani, A. Hyperspectral remote sensing of salt marsh vegetation, morphology and soil topography. Phys. Chem. Earth A/B/C 2003, 28, 15–25. [Google Scholar] [CrossRef]
- Anderson, K.; Croft, H. Remote sensing of soil surface properties. Prog. Phys. Geogr. Earth Environ. 2009, 33, 457–473. [Google Scholar] [CrossRef]
- Zhang, C.; Mishra, D.R.; Pennings, S.C. Mapping salt marsh soil properties using imaging spectroscopy. ISPRS J. Photogramm. Remote Sens. 2019, 148, 221–234. [Google Scholar] [CrossRef]
- Moffett, K.B.; Robinson, D.A.; Gorelick, S.M. Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity, and topography. Ecosystems 2010, 13, 1287–1302. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdianpari, M.; Granger, J.E.; Mohammadimanesh, F.; Salehi, B.; Brisco, B.; Homayouni, S.; Gill, E.; Huberty, B.; Lang, M. Meta-analysis of wetland classification using remote sensing: A systematic review of a 40-year trend in North America. Remote Sens. 2020, 12, 1882. [Google Scholar] [CrossRef]
- Qureshi, S.; Alavipanah, S.K.; Konyushkova, M.; Mijani, N.; Fathololomi, S.; Firozjaei, M.K.; Homaee, M.; Hamzeh, S.; Kakroodi, A.A. A remotely sensed assessment of surface ecological change over the Gomishan Wetland, Iran. Remote Sens. 2020, 12, 2989. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 139–159. [Google Scholar]
- Mohamed, E.; Saleh, A.; Belal, A.; Gad, A. Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Remote. Sens. Space Sci. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Rossel, R.V.; Walvoort, D.; McBratney, A.; Janik, L.; Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote sensing techniques for soil organic carbon estimation: A review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Banin, A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Odum, W.E. Comparative ecology of tidal freshwater and salt marshes. Annu. Rev. Ecol. Syst. 1988, 19, 147–176. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Zeng, S.-L.; Gao, Y.; Ouyang, Z.-T.; Li, B.; Fang, C.-M.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Pinheiro, É.F.M.; Ceddia, M.B.; Clingensmith, C.M.; Grunwald, S.; Vasques, G.M. Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the Central Amazon. Remote Sens. 2017, 9, 293. [Google Scholar] [CrossRef] [Green Version]
- Laamrani, A.; Berg, A.A.; Voroney, P.; Feilhauer, H.; Blackburn, L.; March, M.; Dao, P.D.; He, Y.; Martin, R.C. Ensemble identification of spectral bands related to soil organic carbon levels over an agricultural field in Southern Ontario, Canada. Remote Sens. 2019, 11, 1298. [Google Scholar] [CrossRef] [Green Version]
- Edwards, L.; Ambrose, J.; Kirkman, L.K. The Natural Communities of Georgia; University of Georgia Press: Athens, GA, USA, 2013. [Google Scholar]
- US Geological Survey (USGS) Earth Resources Observation and Science Center. Available online: http://landsat.usgs.gov/ (accessed on 25 June 2021).
- Coastal Carbon Research Coordination Network (CCRCN). Available online: https://serc.si.edu/coastalcarbon (accessed on 25 June 2021).
- Craft, C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnol. Oceanogr. 2007, 52, 1220–1230. [Google Scholar] [CrossRef]
- Holmquist, J.R.; Windham-Myers, L.; Bliss, N.; Crooks, S.; Morris, J.T.; Megonigal, J.P.; Troxler, T.; Weller, D.; Callaway, J.; Drexler, J.; et al. Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.C.; Bernhardt, C.E.; Krauss, K.W.; Noe, G.B. The impact of late holocene land use change, climate variability, and sea level rise on carbon storage in tidal freshwater wetlands on the Southeastern United States coastal plain. J. Geophys. Res. Biogeosci. 2017, 122, 3126–3141. [Google Scholar] [CrossRef] [Green Version]
- Krauss, K.W.; Noe, G.B.; Duberstein, J.A.; Conner, W.H.; Stagg, C.L.; Cormier, N.; Jones, M.C.; Bernhardt, C.E.; Lockaby, B.G.; From, A.S.; et al. The role of the upper tidal estuary in wetland blue carbon storage and flux. Glob. Biogeochem. Cycles 2018, 32, 817–839. [Google Scholar] [CrossRef]
- Nahlik, A.M.; Fennessy, M.S. Carbon storage in US wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef] [Green Version]
- Noe, G.B.; Krauss, K.W.; Lockaby, B.G.; Conner, W.H.; Hupp, C.R. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 2013, 114, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Pennings, M. Fall 2000 Soil Organic Content Survey--Ash-Free Dry Weight Analysis for Soil Samples from 10 GCE LTER Sampling Sites; LTER: Santa Barbara, CA, USA, 2001. [Google Scholar]
- Pennings, S. Soil Salinity and Water Content at GCE-LTER Vegetation Monitoring Plots in October 2011; LTER: Santa Barbara, CA, USA, 2012. [Google Scholar]
- Georgia Coastal Ecosystems Long-Term Ecological Research (GCE LTER). Available online: https://gce-lter.marsci.uga.edu/ (accessed on 25 June 2021).
- Braun-Blanquet, J. Plant Sociology. The Study of Plant Communities, 1st ed.; McGraw-Hill: New York, NY, USA, 1932. [Google Scholar]
- Casanova, M.; Tapia, E.; Seguel, O.; Salazar, O. Direct measurement and prediction of bulk density on alluvial soils of central Chile. Chil. J. Agric. Res. 2016, 76, 105–113. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO11272-2017. Soil Quality—Determination of Dry Bulk Density; ISO: Geneva, Switzerland, 2017; p. 14. [Google Scholar]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil bulk density estimation methods: A review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- Yadav, J.; Sharma, M. A review of K-mean algorithm. Int. J. Eng. trends Technol. 2013, 4, 2972–2976. [Google Scholar]
- Arora, P.; Deepali; Varshney, S. Analysis of K-means and K-medoids algorithm for big data. Procedia Comput. Sci. 2016, 78, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Izquierdo-Verdiguier, E.; Zurita-Milla, R. An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. Int. J. Appl. Earth Obs. Geoinformation 2020, 88, 102051. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Ren, T.; Liu, D.; Ma, Z.; Tong, L.; Zhang, C.; Zhou, T.; Zhang, X.; Li, S. Identification of seed maize fields with high spatial resolution and multiple spectral remote sensing using random forest classifier. Remote Sens. 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, R.U.; Shankar, B.U. A novel multilabel classification of remote sensing images using XGBoost. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Pune, India, 29–31 March 2019; pp. 1–5. [Google Scholar]
- Zhang, X.M.; He, G.J.; Peng, Y.; Long, T.F. Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping. Clust. Comput. 2017, 20, 2311–2321. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, R.; Wang, S.; Wang, F. Feature selection method based on high-resolution remote sensing images and the effect of sensitive features on classification accuracy. Sensors 2018, 18, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joharestani, M.Z.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 prediction based on Random Forest, XGBoost, and Deep Learning using multisource remote sensing data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Lagrange, A.; Fauvel, M.; Grizonnet, M. Large-scale feature selection with gaussian mixture models for the classification of high dimensional remote sensing images. IEEE Trans. Comput. Imaging 2017, 3, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Hikouei, I.S.; Kin, S.S.; Sutter, L.; Christian, J.; Durham, S.; Yang, J. Machine learning approach to identify the relationship between heavy metals and soil parameters in salt marshes. Int. J. Environ. Sci. Nat. Res. 2021, 27. [Google Scholar]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality reduction and feature selection for object-based land cover classification based on sentinel-1 and sentinel-2 time series using Google Earth engine. Remote Sens. 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Tao, X.; Miguel, J.P.; Plaza, J. A new GPU implementation of support vector machines for fast hyperspectral image classification. Remote. Sens. 2020, 12, 1257. [Google Scholar] [CrossRef] [Green Version]
- Alimjan, G.; Sun, T.; Liang, Y.; Jumahun, H.; Guan, Y. A new technique for remote sensing image classification based on combinatorial algorithm of SVM and KNN. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1859012. [Google Scholar] [CrossRef]
- Ren, J.; Wang, R.; Liu, G.; Wang, Y.; Wu, W. An SVM-based nested sliding window approach for spectral–spatial classification of hyperspectral images. Remote Sens. 2020, 13, 114. [Google Scholar] [CrossRef]
- Ezzahar, J.; Ouaadi, N.; Zribi, M.; Elfarkh, J.; Aouade, G.; Khabba, S.; Er-Raki, S.; Chehbouni, A.; Jarlan, L. Evaluation of backscattering models and support vector machine for the retrieval of bare soil moisture from sentinel-1 data. Remote Sens. 2019, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of support vector machine and random forest algorithms for invasive and expansive species classification using airborne hyperspectral data. Remote Sens. 2020, 12, 516. [Google Scholar] [CrossRef] [Green Version]
- Roli, F.; Fumera, G. Support vector machines for remote sensing image classification. Europto Remote Sens. 2001, 4170, 160–167. [Google Scholar] [CrossRef]
- Mou, L.; Saha, S.; Hua, Y.; Bovolo, F.; Bruzzone, L.; Zhu, X.X. Deep reinforcement learning for band selection in hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 2021, PP, 1–14. [Google Scholar] [CrossRef]
- Belousov, A.I.; Verzakov, S.A.; Von Frese, J. Applicational aspects of support vector machines. J. Chemom. 2002, 16, 482–489. [Google Scholar] [CrossRef]
- Marjanovic, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Random forests. In Linear and Generalized Linear Mixed Models and Their Applications; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2008; pp. 587–604. [Google Scholar]
- Zhou, Z.-H. Ensemble Learning. Encycl. Biom. 2009, 1, 270–273. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Cham, Switzerland, 2013; Volume 112, p. 18. [Google Scholar]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS Int. J. Geo-Information 2017, 6, 51. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Neupane, R.; Sood, K.; Kumar, S. Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA. Carbon Manag. 2017, 8, 277–291. [Google Scholar] [CrossRef]
- Hobley, E.U.; Wilson, B. The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere 2016, 7, e01214. [Google Scholar] [CrossRef] [Green Version]
- Fang, P.; Zhang, X.; Wei, P.; Wang, Y.; Zhang, H.; Liu, F.; Zhao, J. The classification performance and mechanism of machine learning algorithms in winter wheat mapping using sentinel-2 10 m resolution imagery. Appl. Sci. 2020, 10, 5075. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote. Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Jin, X.; Yang, Z.; Liu, H. Predicting soil organic carbon and soil nitrogen stocks in topsoil of forest ecosystems in northeastern china using remote sensing data. Remote Sens. 2020, 12, 1115. [Google Scholar] [CrossRef] [Green Version]
- Stoner, E.R.; Baumgardner, M.F. Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 1981, 45, 1161–1165. [Google Scholar] [CrossRef] [Green Version]
- Henderson, T.L.; Baumgardner, M.F.; Franzmeier, D.P.; Stott, D.; Coster, D.C. High dimensional reflectance analysis of soil organic matter. Soil Sci. Soc. Am. J. 1992, 56, 865–872. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, R.; Li, S.; Chen, S.; Jiang, Q.; Zhou, L.; Shi, Z. Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China. Eur. J. Soil Sci. 2018, 70, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Nawar, S.; Munnaf, M.A.; Mouazen, A.M. Machine learning based on-line prediction of soil organic carbon after removal of soil moisture effect. Remote Sens. 2020, 12, 1308. [Google Scholar] [CrossRef] [Green Version]
- Probst, P.; Wright, M.; Boulesteix, A. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, 1301. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.D.; Le, N.N.; Ha, N.T.; Nguyen, L.V.; Xia, J.; Yokoya, N.; To, T.T.; Trinh, H.X.; Kieu, L.Q.; Takeuchi, W. Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 data in Can Gio Biosphere Reserve, Vietnam. Remote. Sens. 2020, 12, 777. [Google Scholar] [CrossRef] [Green Version]
- Putatunda, S.; Rama, K. A modified bayesian optimization based hyper-parameter tuning approach for extreme gradient boosting. In Proceedings of the 2019 Fifteenth International Conference on Information Processing (ICINPRO), Bengaluru, India, 20–22 December 2019; pp. 1–6. [Google Scholar]
Data Source | Sampling Date | Number of Samples | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|---|---|
Our Survey | 2018 | 24 | 0.17 g/cm3 | 1.66 g/cm3 | 0.78 g/cm3 | 0.51 g/cm3 |
CCRCN | 2007–2013–2016–2018 | 622 | 0.18 g/cm3 | 1.56 g/cm3 | 0.62 g/cm3 | 0.43 g/cm3 |
GCE-LTER | 2000–2009–2011 | 346 | 0.11 g/cm3 | 1.89 g/cm3 | 0.59 g/cm3 | 0.54 g/cm3 |
Models | Class | Recall | Precision | Mean Recall | Mean Precision | Accuracy |
---|---|---|---|---|---|---|
SVM | Low BD | 0.96 | 0.87 | 0.78 | 0.84 | 0.86 |
High BD | 0.60 | 0.82 | ||||
RF | Low BD | 0.88 | 0.96 | 0.85 | 0.79 | 0.87 |
High BD | 0.83 | 0.62 | ||||
XGBoost | Low BD | 0.96 | 0.88 | 0.78 | 0.86 | 0.88 |
High BD | 0.61 | 0.84 |
SVM | |||
True | |||
Predicted | Low BD | High BD | |
Low BD | 178 | 25 | |
High BD | 8 | 37 | |
RF | |||
True | |||
Predicted | Low BD | High BD | |
Low BD | 179 | 25 | |
High BD | 7 | 38 | |
XGBoost | |||
True | |||
Predicted | Low BD | High BD | |
Low BD | 178 | 24 | |
High BD | 8 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi Hikouei, I.; Kim, S.S.; Mishra, D.R. Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments. Sensors 2021, 21, 4408. https://doi.org/10.3390/s21134408
Salehi Hikouei I, Kim SS, Mishra DR. Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments. Sensors. 2021; 21(13):4408. https://doi.org/10.3390/s21134408
Chicago/Turabian StyleSalehi Hikouei, Iman, S. Sonny Kim, and Deepak R. Mishra. 2021. "Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments" Sensors 21, no. 13: 4408. https://doi.org/10.3390/s21134408
APA StyleSalehi Hikouei, I., Kim, S. S., & Mishra, D. R. (2021). Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments. Sensors, 21(13), 4408. https://doi.org/10.3390/s21134408