Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface
Abstract
:1. Introduction
System Overview
2. Materials and Methods
2.1. Faster R-CNN for Indoor Ramp Detection
2.2. 3D Point Clouds and 2D Feature Extraction
2.3. 2D Mapping and Map Merging
Algorithm 1 Follower Robot Occupancy Grid Map |
do |
) |
5: if Leader robot(uneven = 1) then |
) |
8: j = j + 1 |
9: end if |
= Occupancy Map |
11: end for |
2.4. Communication
2.5. Multi-Robot Localization
Algorithm 2 Multi-Robot Localization |
) |
do |
8: end for |
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosas-Cervantes, V.; Lee, S.-G. 3D Localization of a Mobile Robot by Using Monte Carlo Algorithm and 2D Features of 3D Point Cloud. Int. J. Control. Autom. Syst. 2020, 18, 2955–2965. [Google Scholar] [CrossRef]
- Sakai, T.; Koide, K.; Miura, J.; Oishi, S. Large-scale 3D outdoor mapping and on-line localization using 3D-2D matching. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (SII), Taipei, Taiwan, 11–14 December 2017. [Google Scholar]
- Aragüés, R.; Cortes, J.; Sagues, C. Distributed consensus algorithms for merging feature-based maps with limited communication. Robot. Auton. Syst. 2011, 59, 163–180. [Google Scholar] [CrossRef]
- Burgard, W.; Moors, M.; Fox, D.; Simmons, R.; Thrun, S. Collaborative multi-robot exploration in Proceedings 2000 ICRA. Millennium Conference. In Proceedings of the IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, 24–28 April 2000; Volume 1, pp. 476–481. [Google Scholar]
- Zhou, X.S.; Roumeliotis, S.I. Multi-robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 1785–1792. [Google Scholar]
- Muñoz-Salinas, R.; Medina-Carnicer, R. UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognit. 2020, 101, 107193. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-Time. In Proceedings of the Robotics: Science and Systems (RSS ‘14), Berkeley, CA, USA, 12–16 July 2014; pp. 109–111. [Google Scholar] [CrossRef]
- Gold, S.; Lu, C.-P.; Rangarajan, A.; Pappu, S.; Mjolsness, E. New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence. Pattern Recognit. 1994, 31, 1019–1031. [Google Scholar] [CrossRef]
- Tsin, Y.; Kanade, T. A Correlation-Based Approach to Robust Point Set Registration. In Computer Vision—ECCV 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 558–569. [Google Scholar]
- Baker, S.; Matthews, I. Lucas-Kanade 20 Years On: A Unifying Framework. Int. J. Comput. Vis. 2004, 56, 221–255. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Y. Notice of Retraction: A patrolling scheme in wireless sensor and robot networks. In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai, China, 10–15 April 2011; pp. 513–518. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, T. Multi-robot patrol: A distributed algorithm based on expected idleness. Int. J. Adv. Robot. Syst. 2016, 13. [Google Scholar] [CrossRef] [Green Version]
- Carpin, S. Fast and accurate map merging for multi-robot systems. Auton. Robot. 2008, 25, 305–316. [Google Scholar] [CrossRef]
- Georgiou, C.; Anderson, S.; Dodd, T. Constructing informative Bayesian map priors: A multi-objective optimisation approach applied to indoor occupancy grid mapping. Int. J. Robot. Res. 2017, 36, 274–291. [Google Scholar] [CrossRef]
- Vysotska, O.; Stachniss, C. Improving SLAM by Exploiting Building Information from Publicly Available Maps and Localization Priors. PFG—J. Photogramm. Remote. Sens. Geoinf. Sci. 2017, 85, 53–65. [Google Scholar] [CrossRef]
- Mielle, M.; Magnusson, M.; Andreasson, H.; Lilienthal, A. SLAM auto-complete: Completing a robot map using an emergency map. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 35–40. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.H.; Beevers, K.R. Topological Map Merging. Int. J. Robot. Res. 2005, 24, 601–613. [Google Scholar] [CrossRef]
- Mielle, M.; Magnusson, M.; Lilienthal, A.J. Using sketch-maps for robot navigation: Interpretation and matching. In Proceedings of the 2016 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016; pp. 252–257. [Google Scholar]
- Pippin, C.; Christensen, H.; Weiss, L. Performance based task assignment in multi-robot patrolling. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22 March 2013; pp. 70–76. [Google Scholar] [CrossRef]
- Kakuma, D.; Tsuichihara, S.; Ricardez, G.A.G.; Takamatsu, J.; Ogasawara, T. Alignment of Occupancy Grid and Floor Maps Using Graph Matching. In Proceedings of the 2017 IEEE 11th International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 30 Janaury–1 February 2017; pp. 57–60. [Google Scholar]
- Krajník, T.; Fentanes, J.P.; Hanheide, M.; Duckett, T. Persistent localization and life-long mapping in changing environments using the Frequency Map Enhancement. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4558–4563. [Google Scholar]
- Pfingsthorn, M.; Birk, A. Efficiently communicating map updates with the pose graph. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2519–2524. [Google Scholar]
- Dissanayake, M.W.M.G.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; Csorba, M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 2001, 17, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.; Takami, K.; Lee, T.; Ai, Z. Autonomous Exploration with Exact Inverse Sensor Models. J. Intell. Robot. Syst. 2018, 92, 435–452. [Google Scholar] [CrossRef]
- Joubert, D.; Brink, W.; Herbst, B. Pose Uncertainty in Occupancy Grids through Monte Carlo Integration. J. Intell. Robot. Syst. 2015, 77, 5–16. [Google Scholar] [CrossRef]
- Jadidi, M.G.; Miro, J.V.; Dissanayake, G. Mutual information-based exploration on continuous occupancy maps. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 6086–6092. [Google Scholar]
- Eckart, B.; Kim, K.; Troccoli, A.; Kelly, A.; Kautz, J. Accelerated Generative Models for 3D Point Cloud Data. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5497–5505. [Google Scholar]
- Souza, A.; Maia, R.; Gonçalves, L. 3D Probabilistic Occupancy Grid to Robotic Mapping with Stereo Vision. In Current Advancements in Stereo Vision; IntechOpen: London, UK, 2012; pp. 181–195. [Google Scholar]
- Kaufman, E.; Lee, T.; Ai, Z. Autonomous exploration by expected information gain from probabilistic occupancy grid mapping. In Proceedings of the 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), San Francisco, CA, USA, 13–16 December 2016; pp. 246–251. [Google Scholar]
- Kaufman, E.; Takami, K.; Ai, Z.; Lee, T. Autonomous Quadrotor 3D Mapping and Exploration Using Exact Occupancy Probabilities. In Proceedings of the 2018 Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, USA, 31 Janaury–2 February 2018; pp. 49–55. [Google Scholar]
- Einhorn, E.; Schröter, C.; Gross, H. Finding the adequate resolution for grid mapping—Cell sizes locally adapting on-the-fly. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1843–1848. [Google Scholar]
- Khan, S.; Wollherr, D.; Buss, M. Adaptive rectangular cuboids for 3D mapping. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2132–2139. [Google Scholar]
- Zhu, C.; Ding, R.; Lin, M.; Wu, Y. A 3D Frontier-Based Exploration Tool for MAVs. In Proceedings of the 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, Italy, 9–11 November 2015; pp. 348–352. [Google Scholar]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Droeschel, D.; Schwarz, M.; Behnke, S. Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner. Robot. Auton. Syst. 2017, 88, 104–115. [Google Scholar] [CrossRef]
- Cieslewski, T.; Choudhary, S.; Scaramuzza, D. Data-Efficient Decentralized Visual SLAM. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2466–2473. [Google Scholar]
- Pal, A.; Tiwari, R.; Shukla, A. Multi-Robot Exploration in Wireless Environments. Cogn. Comput. 2012, 4, 526–542. [Google Scholar] [CrossRef]
- Smith, A.J.; Hollinger, G.A. Distributed inference-based multi-robot exploration. Auton. Robot. 2018, 42, 1651–1668. [Google Scholar] [CrossRef]
- Fan, T.; Long, P.; Liu, W.; Pan, J. Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. Int. J. Robot. Res. 2020, 39, 856–892. [Google Scholar] [CrossRef]
- Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive environments. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Bargoti, S.; Underwood, J. Deep fruit detection in orchards. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 3626–3633. [Google Scholar]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [Green Version]
- Fox, D.; Ko, J.; Konolige, K.; Limketkai, B.; Schulz, D.; Stewart, B. Distributed Multirobot Exploration and Mapping. Proc. IEEE 2006, 94, 1325–1339. [Google Scholar] [CrossRef]
- Pütz, S.; Wiemann, T.; Sprickerhof, J.; Hertzberg, J. 3D Navigation Mesh Generation for Path Planning in Uneven Terrain. IFAC-PapersOnLine 2016, 49, 212–217. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
Leader Robot | Follower Robot | ||
---|---|---|---|
Error (m) | X-Axis | 0.26 | 0.22 |
Y Axis | 0.19 | 0.24 | |
Z Axis | 0.31 | 0.86 |
Leader Robot | Error (m) | Time (min) | ||
---|---|---|---|---|
X | Y | Z | ||
Our Method | 0.26 | 0.32 | 0.27 | 14.64 |
GICP | 0.18 | 0.17 | 0.17 | 11.90 |
LOAM | 0.25 | 0.12 | 0.19 | 11.67 |
Follower Robot | Error (m) | Time (min) | |
---|---|---|---|
X | Y | ||
Our Method | 0.02 | 0.05 | 12.10 |
GICP | 0.20 | 0.27 | 18.14 |
LOAM | 0.20 | 0.27 | 18.14 |
Multi-Robot | Error (m) | Time (min) | |
---|---|---|---|
X | Y | ||
Our Method | 0.28 | 0.37 | 26.74 |
GICP | 0.38 | 0.44 | 30.04 |
LOAM | 0.45 | 0.39 | 29.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosas-Cervantes, V.A.; Hoang, Q.-D.; Lee, S.-G.; Choi, J.-H. Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface. Sensors 2021, 21, 4588. https://doi.org/10.3390/s21134588
Rosas-Cervantes VA, Hoang Q-D, Lee S-G, Choi J-H. Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface. Sensors. 2021; 21(13):4588. https://doi.org/10.3390/s21134588
Chicago/Turabian StyleRosas-Cervantes, Vinicio Alejandro, Quoc-Dong Hoang, Soon-Geul Lee, and Jae-Hwan Choi. 2021. "Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface" Sensors 21, no. 13: 4588. https://doi.org/10.3390/s21134588
APA StyleRosas-Cervantes, V. A., Hoang, Q. -D., Lee, S. -G., & Choi, J. -H. (2021). Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface. Sensors, 21(13), 4588. https://doi.org/10.3390/s21134588