Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Fabrication of the 3D Printed Device
2.3. Voltammetric Measurements and Samples Analysis
3. Results and Discussion
3.1. Voltammetric Determination of Quetiapine Fumarate
3.2. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheer, S.M.; Wagstaff, A.J.; Kasper, S.; Psychiatry, G. A Review of Its Use in the Management of Schizophrenia. Adis Drug Eval. 2004, 18, 173–199. [Google Scholar] [CrossRef]
- Barrett, B.; Hol, M.; Jel, I. Validated HPLC—MS/MS Method for Determination of Quetiapine in Human Plasma. J. Pharm. Biomed. Anal. 2007, 44, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Gracia, M.S.; Köppl, A.; Unholzer, S. Development and Validation of an HPLC—UV Method for the Simultaneous Determination of the Antipsychotics Clozapine, Olanzapine and Quetiapine, Several Beta—Blockers and Their Metabolites. Biomed. Chromatogr. 2017, 31, 1–11. [Google Scholar] [CrossRef]
- Mostafa, I.M.; Omar, M.A.; Nagy, D.M.; Derayea, S.M. Spectroscopy Analysis of Quetiapine in Human Plasma Using Fl Uorescence Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wen, J.; Zhou, T.; Fan, G. On-Line Organic Solvent Field Enhanced Sample Injection in Capillary Zone Electrophoresis for Analysis of Quetiapine in Beagle Dog Plasma. Molecules 2016, 21, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safaei, M.; Shishehbore, M.R. Talanta A Review on Analytical Methods with Special Reference to Electroanalytical Methods for the Determination of Some Anticancer Drugs in Pharmaceutical and Biological Samples. Talanta 2021, 229, 122247. [Google Scholar] [CrossRef]
- Zabihollahpoor, A.; Rahimnejad, M.; Najafpour-darzi, G. Journal of Pharmaceutical and Biomedical Analysis Recent Advances in Electroanalytical Methods for the Therapeutic Monitoring of Antiepileptic Drugs: A Comprehensive Review. J. Pharm. Biomed. Anal. 2020, 188, 113394. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A. Recent Advances in Voltammetric, Amperometric and Ion-Selective (Bio)Sensors Fabricated by Microengineering Manufacturing Approaches. Curr. Opin. Electrochem. 2020, 23, 21–25. [Google Scholar] [CrossRef]
- Elbadawi, M.; Ong, J.J.; Pollard, T.D.; Gaisford, S.; Basit, A.W. Additive Manufacturable Materials for Electrochemical Biosensor Electrodes. Adv. Funct. Mater. 2020, 2006407, 1–26. [Google Scholar] [CrossRef]
- Motaharian, A.; Naseri, K.; Mehrpour, O.; Shoeibi, S. Analytica Chimica Acta Electrochemical Determination of Atypical Antipsychotic Drug Quetiapine Using Nano-Molecularly Imprinted Polymer Modified Carbon Paste Electrode. Anal. Chim. Acta 2020, 1097, 214–221. [Google Scholar] [CrossRef] [PubMed]
- El-shal, M.A. Electrochemical Studies for the Determination of Quetiapine Fumarate and Olanzapine Antipsychotic Drugs. Adv. Pharm Bull. 2013, 3, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Spaji, J. A Novel Electrochemical Sensor for Assaying of Antipsychotic Drug Quetiapine. Talanta 2011, 86, 393–399. [Google Scholar] [CrossRef]
- Nebsen, M.; Maged, C.; Maraghy, E.; Salem, H.; Amer, S.M. Novel Membrane Sensors for the Determination of Quetiapine Fumarate in Plasma and in Presence of its Related Compounds. Anal. Bioanal. Electrochem. 2016, 8, 50–63. [Google Scholar]
- Lawrywianiec, M.; Smajdor, J.; Piech, R. Analytical Methods Application of a Glassy Carbon Electrode Modi Fi Ed with Carbon Black Nanoparticles for Highly Sensitive Voltammetric Determination of Quetiapine. Anal. Methods 2017, 20, 6662–6668. [Google Scholar] [CrossRef]
- Nigovi, B.; Mornar, A.; Serti, M. Graphene Nanocomposite Modified Glassy Carbon Electrode for Voltammetric Determination of the Antipsychotic Quetiapine. Microchim. Acta 2016, 183, 1459–1467. [Google Scholar] [CrossRef]
- Ozkan, S.A.; Dogan, B.; Uslu, B. Voltammetric Analysis of the Novel Atypical Antipsychotic Drug Quetiapine in Human Serum and Urine. Microchim. Acta 2006, 35, 27–35. [Google Scholar] [CrossRef]
- El-shal, M.A.; El-Brashy, A.; Belal, F.; El-Bahay, N. Polarographic Analysis of Quetiapine in Pharmaceuticals. Port. Electrochim. Acta 2009, 27, 113–125. [Google Scholar] [CrossRef]
- Arida, H.; Al, M.; Elbeshlawy, M.; Fataftah, A.; Al-sllami, G. A New Coated Wire Selective Electrode for Quetiapine in Biological and Pharmaceutical Analysis. Int. J. Electrochem. Sci. 2017, 12, 4120–4121. [Google Scholar] [CrossRef]
- Carrasco-Correa, E.J.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M.; Miró, M. The Emerging Role of 3D Printing in the Fabrication of Detection Systems. TrAC TrAC Trends Anal. Chem. 2021, 136, 116177. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Jones, A.; Rusling, J.F. 3D-Printed Biosensor Arrays for Medical Diagnostics. Micromachines 2018, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, A.; Patel, B.A. 3D-Printed Electrochemical Sensors: A New Horizon for Measurement of Biomolecules. Curr. Opin. Electrochem. 2020, 20, 78–81. [Google Scholar] [CrossRef]
- Katseli, V.; Economou, A.; Kokkinos, C. A Novel All-3D-Printed Cell-on-a-Chip Device as a Useful Electroanalytical Tool: Application to the Simultaneous Voltammetric Determination of Caffeine and Paracetamol. Talanta 2020, 208, 120388. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.G.; Matias, T.A.; Richter, E.M.; Jo, A.F.; Mu, R.A.A. 3D-Printing in Forensic Electrochemistry: Atropine Determination in Beverages Using an Additively Manufactured Graphene-Polylactic Acid Electrode. Microchem. J. 2021, 167, 106324. [Google Scholar] [CrossRef]
- Alves, P.; Mendonça, F.; Oliveira, D.; Isaias, E.; Melo, D.; Evaristo, A.; Carvalho, D.; Gabriel, B.; Souza, V.; Amorim, R. Analytica Chimica Acta Multi Sensor Compatible 3D-Printed Electrochemical Cell for Voltammetric Drug Screening. Anal. Chim. Acta 2021, 1169, 338568. [Google Scholar] [CrossRef]
- Natiele, E.; Lucca, B.G. Design of Novel, Simple, and Inexpensive 3D Printing-Based Miniaturized Electrochemical Platform Containing Embedded Disposable Detector for Analytical Applications. Electrophoresis 2020, 278–286. [Google Scholar] [CrossRef]
- Katseli, V.; Economou, A.; Kokkinos, C. Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat. Anal. Chem. 2021, 93, 3331–3336. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Kalinke, C.; Rocha, R.G.; Ldos Santos, P.; Rocha, D.P.; Oliveira, P.R.; Janegitz, B.C.; Bonacin, J.A.; Richter, E.M.; Munoz, R.A.A. Additive-Manufactured (3D-printed) Electrochemical Sensors: A Critical Review. Anal. Chim. Acta 2020, 1118, 73–91. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Silva, P.R.L.; Lima, A.P.; Rocha, D.P.; Oliveira, T.C.; Do Prado, T.M.; Fava, E.L.; Fatibello-Filho, O.; Richtera, E.M.; Munoz, R.A.A. 3D-Printed Graphene/Polylactic Acid Electrode for Bioanalysis: Biosensing of Glucose and Simultaneous Determination of Uric Acid and Nitrite in Biological Fluids. Sens. Actuat. B-Chem. 2020, 307, 127621. [Google Scholar] [CrossRef]
- Silva, V.A.O.P.; Fernandes-Junior, W.S.; Rocha, D.P.; Stefano, J.S.; Munoz, R.A.A.; Bonacin, J.A.; Janegitz, B.C. 3D-Printed Reduced Graphene Oxide/Polylactic Acid Electrodes: A New Prototyped Platform for Sensing and Biosensing Applications. Biosens. Bioelectron. 2020, 170, 112684. [Google Scholar] [CrossRef]
Sensor | Studied Linear Range (mol × L−1) | LOD (mol × L−1) | Reference |
---|---|---|---|
CPE modified with molecularly imprinted polymer | 1.6 × 10−8–2.0 × 10−5 | 5 × 10−9 | 10 |
GCE | 2 × 10−8–5 × 10−6 | 1 × 10−8 | 11 |
GCE modified with polymeric film | 8.0 × 10−8–7.5 × 10−6 | 1.9 × 10−8 | 12 |
PVC membrane sensor | 1 × 10−7–2 × 10−2 | 2 × 10−7 | 13 |
GCE modified with carbon black nanoparticles | 5.0 × 10−8–3.5 × 10−6 | 7 × 10−9 | 14 |
GCE modified with graphene nanoplatelets | 1 × 10−7–1 × 10−5 | 2.2 × 10−8 | 15 |
GCE | 4 × 10−6–2 × 10−4 | 4 × 10−8 | 16 |
Dropping mercury electrode. | 2.1 × 10−5–1.2 × 10−4 | 1.6 × 10−7 | 17 |
PVC membrane sensor | 1 × 10−5–2 × 10−2 | 3.2 × 10−6 | 18 |
3D printed carbon black loaded PLA | 5 × 10−7–8 × 10−6 | 2 × 10−9 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragazou, K.; Lougkovois, R.; Katseli, V.; Kokkinos, C. Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine. Sensors 2021, 21, 4753. https://doi.org/10.3390/s21144753
Ragazou K, Lougkovois R, Katseli V, Kokkinos C. Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine. Sensors. 2021; 21(14):4753. https://doi.org/10.3390/s21144753
Chicago/Turabian StyleRagazou, Katerina, Rallis Lougkovois, Vassiliki Katseli, and Christos Kokkinos. 2021. "Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine" Sensors 21, no. 14: 4753. https://doi.org/10.3390/s21144753
APA StyleRagazou, K., Lougkovois, R., Katseli, V., & Kokkinos, C. (2021). Fully Integrated 3D-Printed Electronic Device for the On-Field Determination of Antipsychotic Drug Quetiapine. Sensors, 21(14), 4753. https://doi.org/10.3390/s21144753