Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network 2019, 34, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Patwary, M.N.; Nawaz, S.J.; Rahman, M.A.; Sharma, S.K.; Rashid, M.M.; Barnes, S.J. The potential short- and long-term disruptions and transformative impacts of 5G and beyond wireless networks: Lessons learnt from the development of a 5G testbed environment. IEEE Access 2020, 8, 11352–11379. [Google Scholar] [CrossRef]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.-J.A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, V.; Li, J. Evolution of physical-layer communications research in the post-5G era. IEEE Access 2019, 7, 392–401. [Google Scholar] [CrossRef]
- Sodin, L.G. Method of Synthesizing a Beam-Forming Device for the N-Beam and N-Element Array Antenna, for any N. IEEE Trans. Antennas Propag. 2012, 60, 1771–1776. [Google Scholar] [CrossRef]
- Montero, J.M.; Ocampo, A.M.; Fonseca, N.J.G. C-band multiple beam antennas for communication satellites. IEEE Trans. Antennas Propag. 2015, 63, 1263–1275. [Google Scholar] [CrossRef]
- Yu, G.X.; Jiang, W.X.; Cui, T.J. Beam deflection and splitting using transformation optics. Cent. Eur. J. Phys. 2011, 9, 183–188. [Google Scholar] [CrossRef]
- Sedeh, H.B.; Fakheri, M.H.; Abdolali, A. Advanced synthesis of meta-antenna radiation pattern enabled by transformation optics. J. Opt. 2019, 21, 045108. [Google Scholar] [CrossRef]
- Forouzmand, A.; Mosallaei, H. Shared aperture antenna for simultaneous two-dimensional beam steering at near-infrared and visible. J. Nanophotonics 2017, 11, 010501. [Google Scholar] [CrossRef]
- Zang, X.; Gong, H.; Li, Z.; Xie, J.Q.; Cheng, L.; Shkurinov, A.P.; Zhu, Y.; Zhuang, S. Metasurface for multi-channel terahertz beam splitters and polarization rotators. Appl. Phys. Lett. 2018, 112, 171111. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Li, J.; Yan, X.; Liang, L.; Zhang, Z.; Huang, J.; Li, J.; Yang, Y.; Yao, J. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam–Berry coding metasurfaces. Nanoscale 2019, 11, 5746–5753. [Google Scholar] [CrossRef]
- Qiu, M.; Jia, M.; Ma, S.; Sun, S.; He, Q.; Zhou, L. Angular dispersions in terahertz metasurfaces: Physics and applications. Phys. Rev. Appl. 2018, 9, 054050. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Z.; Guo, C.; Shen, F.; Sun, J.; Guo, Z. Irrotational nanobricks based high-efficiency polarization-independence metasurfaces. IEEE Photon. J. 2020, 12, 4501108. [Google Scholar] [CrossRef]
- Sun, S.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Tsai, D.P. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef]
- Ding, X.; Kang, Q.; Guo, K.; Guo, Z. Tunable GST metasurfaces for chromatic aberration compensation in the mid-infrared. Opt. Mater. 2020, 109, 110284. [Google Scholar] [CrossRef]
- Luo, L.; Wang, K.; Guo, K.; Shen, F.; Zhang, X.; Yin, Z.; Guo, Z. Tunable manipulation of terahertz wavefront based on graphene metasurfaces. J. Opt. 2017, 19, 115104. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.; Li, D.; Wang, P.; Zhang, N.; Hu, T.; Zhang, M.; Gao, J. Advances on theory and application of polarization information propagation(Invited). Infrared Laser Eng. 2020, 49, 2020. [Google Scholar]
- Yao, Y.; Shankar, R.; Kats, M.A.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Electrically tunable metasurface perfect absorbers for ultrathin midInfrared optical modulators. Nano Lett. 2014, 14, 6526–6532. [Google Scholar] [CrossRef]
- Guo, K.; Xu, H.; Peng, Z.; Liu, X.; Guo, Z. High-efficiency full-vector polarization analyzer based on GaN metasurface. IEEE Sens. J. 2019, 19, 3654–3659. [Google Scholar] [CrossRef]
- Li, R.; Guo, Z.; Wang, W.; Zhang, J.; Zhang, A.; Liu, J.; Qu, S.; Gao, J. Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Opt. Express 2014, 22, 27968–27975. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, L.; Shen, F.; Guo, K.; Guo, Z. A broadband achromatic metalens in mid-infrared region. Phys. Rev. Appl. 2019. [Google Scholar]
- He, J.; Zhang, Y. Metasurfaces in terahertz waveband. J. Phys. D Appl. Phys. 2017, 50, 464004. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Yang, X.; Wang, J.; Guo, K.; Shen, F.; Zhou, H.; Sun, R.; Ding, Z.; Gao, J.; Guo, Z. Theoretical analysis and simulation of a tunable mid-infrared filter based on Ge2Sb2Te5 (GST) metasurface. Superlattices Microstruct. 2019, 132, 106169. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Z.; Yue, W.; Gu, J.; Zhang, S.; Han, J.; Zhang, W. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater. 2013, 25, 4567–4572. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Z.; Guo, C.; Guo, K.; Guo, Z. Spin-selected dual-wavelength plasmonic metalenses. Nanomaterials. 2019, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Guo, K.; Guo, Z. THz Filter based on the Si microdisk array. AIP Adv. 2019, 9, 045106. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Renzo, M.D.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Huang, C.; Mo, R.; Yuen, C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning. IEEE J. Select. Areas Commun. 2020, 38, 1839–1850. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Alexandropoulos, G.C.; Yuen, C.; Zhang, Z.; Debbah, M. Channel estimation for RIS-empowered multi-user MISO wireless communications. IEEE Trans. Commun. 2021, 69, 4144–4157. [Google Scholar] [CrossRef]
- Di, B.; Zhang, H.; Li, L.; Song, L.; Li, Y.; Han, Z. Practical hybrid beamforming with finite-resolution phase shifters for reconfigurable intelligent surface based multi-user communications. IEEE Trans. Veh. Technol. 2020, 69, 4565–4570. [Google Scholar] [CrossRef]
- Shlezinger, N.; Dicker, O.; Eldar, Y.C.; Yoo, I.; Imani, M.F.; Smith, D.R. Dynamic metasurface antennas for uplink massive MIMO systems. IEEE Trans. Commun. 2019, 67, 6829–6843. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef] [Green Version]
- Bildik, S.; Dieter, S.; Fritzsch, C.; Frei, M.; Fischer, C.; Menzel, W.; Jakoby, R. Reconfigurable liquid crystal reflectarray with extended tunable phase range. In Proceedings of the 2011 41st European Microwave Conference, Manchester, UK, 10–13 October 2011; pp. 1292–1294. [Google Scholar]
- Meng, X.; Nekovee, M.; Wu, D. Reconfigurable liquid crystal reflectarray metasurface for THz communications. In Proceedings of the Antennas and Propagation Conference 2019, Birmingham, UK, 11–12 November 2019; pp. 1–6. [Google Scholar]
- Ma, H.F.; Liu, Y.Q.; Luan, K.; Cui, T.J. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yan, X.; Liang, L.; Wei, D.; Wang, M.; Wang, Y.; Yao, J. The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies. Carbon 2018, 132, 529–538. [Google Scholar] [CrossRef]
- Christensen, J.; Manjavacas, A.; Thongrattanasiri, S.; Koppens, F.H.; de Abajo, F.J.G. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS. Nano. 2012, 6, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Mao, D.; Zeng, C.; Xiao, F.; Yang, D.; Mei, T.; Zhao, J. Plasmonic fano spectral response from graphene metasurfaces in the MIR region. Opt. Mater. Express. 2018, 8, 1058–1068. [Google Scholar] [CrossRef]
- Azam, S.; Khan, M.A.K.; Shaem, T.A.; Khan, A.Z. Graphene based circular patch terahertz antenna using novel substrate materials. In Proceedings of the 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT), Himeji, Japan, 1–3 September 2017; pp. 1–6. [Google Scholar]
- Hwang, E.H.; Sarma, S.D. Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer. Phys. Rev. B 2018, 77, 195412. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Yang, J.; Ma, Y. Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis. Appl. Phys. Express. 2016, 9, 122001. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Zhu, L.; Yao, J. Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 2016, 8, 15273–15280. [Google Scholar] [CrossRef] [PubMed]
- Rouhi, N.; Capdevila, S.; Jain, D.; Zand, K.; Wang, Y.Y.; Brown, E.; Jofre, L.; Burke, P. Terahertz graphene optics. Nano. Res. 2012, 5, 667–678. [Google Scholar] [CrossRef]
- Yao, K. Towards Infrared Reconfigurable Plasmonics and Metamaterials. Ph.D. Thesis, Northeastern University Boston, Boston, MA, USA, July 2017. [Google Scholar]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase piscontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
w(μm) (1–11) | 1.030 | 1.062 | 1.157 | 1.027 | 0.690 | 0.862 | 0.912 | 0.939 | 0.957 | 0.971 | 0.985 |
EF(eV) | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 |
w(μm) (12–22) | 1.001 | 1.020 | 1.030 | 1.062 | 1.157 | 1.027 | 0.690 | 0.862 | 0.912 | 0.939 | 0.957 |
EF(eV) | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 | 0.640 |
w(μm) (23–33) | 0.972 | 0.986 | 1.002 | 1.020 | 1.020 | 1.016 | 1.008 | 1.001 | 0.996 | 0.991 | 0.986 |
EF(eV) | 0.640 | 0.640 | 0.640 | 0.640 | 0.600 | 0.597 | 0.563 | 0.450 | 0.617 | 0.800 | 0.717 |
w(μm) (34–44) | 0.981 | 0.976 | 0.972 | 0.967 | 0.962 | 0.957 | 0.952 | 0.946 | 0.940 | 0.932 | 0.923 |
EF(eV) | 0.685 | 0.656 | 0.650 | 0.640 | 0.620 | 0.600 | 0.600 | 0.598 | 0.596 | 0.593 | 0.590 |
w(μm) (45–55) | 0.913 | 0.900 | 0.884 | 0.862 | 0.832 | 0.783 | 0.690 | 0.390 | 1.027 | 1.028 | 1.477 |
EF(eV) | 0.586 | 0.583 | 0.580 | 0.556 | 0.551 | 0.502 | 0.450 | 0.250 | 0.707 | 0.716 | 0.980 |
w(μm) (56–66) | 1.242 | 1.158 | 1.112 | 1.083 | 1.062 | 1.046 | 1.034 | 1.030 | 1.020 | 1.002 | 0.986 |
EF(eV) | 0.977 | 0.891 | 0.856 | 0.846 | 0.852 | 0.880 | 0.947 | 0.614 | 0.613 | 0.614 | 0.324 |
w(μm) (67–77) | 0.972 | 0.957 | 0.940 | 0.913 | 0.862 | 0.690 | 1.028 | 1.158 | 1.062 | 1.030 | 1.020 |
EF(eV) | 0.442 | 0.490 | 0.510 | 0.514 | 0.500 | 0.400 | 0.600 | 0.700 | 0.650 | 0.600 | 0.650 |
w(μm) (78–88) | 1.002 | 0.986 | 0.972 | 0.957 | 0.940 | 0.913 | 0.862 | 0.690 | 1.028 | 1.158 | 1.062 |
EF(eV) | 0.650 | 0.651 | 0.651 | 0.610 | 0.602 | 0.601 | 0.553 | 0.450 | 0.685 | 0.805 | 0.729 |
w(μm) (89–99) | 1.030 | 1.020 | 1.002 | 0.986 | 0.972 | 0.957 | 0.940 | 0.913 | 0.862 | 0.690 | 1.028 |
EF(eV) | 0.704 | 0.700 | 0.693 | 0.688 | 0.684 | 0.677 | 0.672 | 0.654 | 0.625 | 0.480 | 0.935 |
w(μm) (100–102) | 1.158 | 1.062 | 1.030 | ||||||||
EF(eV) | 0.717 | 0.667 | 0.610 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, H.; Kang, Q.; Wang, W.; Guo, K.; Guo, Z. Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces. Sensors 2021, 21, 4784. https://doi.org/10.3390/s21144784
Ai H, Kang Q, Wang W, Guo K, Guo Z. Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces. Sensors. 2021; 21(14):4784. https://doi.org/10.3390/s21144784
Chicago/Turabian StyleAi, Huifang, Qianlong Kang, Wei Wang, Kai Guo, and Zhongyi Guo. 2021. "Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces" Sensors 21, no. 14: 4784. https://doi.org/10.3390/s21144784
APA StyleAi, H., Kang, Q., Wang, W., Guo, K., & Guo, Z. (2021). Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces. Sensors, 21(14), 4784. https://doi.org/10.3390/s21144784