Digital Incoherent Compressive Holography Using a Geometric Phase Metalens
Abstract
:1. Introduction
2. SIDH with Geometric Phase Metalens and Spatial Distortion Compensation
2.1. SIDH System with a Geometric Phase Metalens
2.2. Compressive Holography
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Intensity of Interference Pattern for a Single Point Source
Appendix B. The Total Intensity Profile by Phase Shifting
References
- Schnars, U.; Hartmann, H.J.; Juptner, W. Digital recording and numerical reconstruction of holograms for nondestructive testing. Proc. SPIE 1995, 2545, 250–253. [Google Scholar]
- Yang, S.; Xie, X.; Thuo, Y.; Jia, C. Reconstruction of near-field in-line holograms. Opt. Commun. 1999, 159, 29–31. [Google Scholar] [CrossRef]
- Grilli, S.; Ferraro, P.; De Nicola, S.; Finizio, A.; Pierattini, G.; Meucci, R. Whole optical wavefield reconstruction by digital holography. Opt. Express 2001, 9, 294–302. [Google Scholar] [CrossRef]
- Schnars, U.; Jüptner, W. Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 2002, 13, R85–R101. [Google Scholar] [CrossRef]
- Sevrygin, A.A.; Korotkov, V.I.; Pulkin, S.A.; Tursunov, I.M.; Venediktov, D.V.; Venediktov, V.Y.; Volkov, O.V. Digital holographic Michelson interferometer for nanometrology. In Holography, Diffractive Optics, and Applications VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 9271, p. 927118. [Google Scholar]
- Liu, J.P.; Chen, W.T.; Wen, H.H.; Poon, T.C. Recording of a curved digital hologram for orthoscopic real image reconstruction. Opt. Lett. 2020, 45, 4353–4356. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, A.W. Wavefront reconstruction for incoherent objects. J. Opt. Soc. Am. 1965, 55, 1555–1556. [Google Scholar] [CrossRef]
- Stroke, G.W.; Restrick, R.C. Holography with spatially noncoherent light. Appl. Phys. Lett. 1965, 7, 229–231. [Google Scholar] [CrossRef] [Green Version]
- Cochran, G. New method of making Fresnel transforms with incoherent light. J. Opt. Soc. Am. 1966, 56, 1513–1517. [Google Scholar] [CrossRef]
- Peters, P.J. Incoherent holograms with a mercury light source. Appl. Phys. Lett. 1966, 8, 209–210. [Google Scholar] [CrossRef]
- Worthington, H.R. Production of holograms with incoherent illumination. J. Opt. Soc. Am. 1966, 56, 1397–1398. [Google Scholar] [CrossRef]
- Nomura, T.; Itoh, K.; Ichioka, Y. Hybrid high speed pattern matching using a binary incoherent hologram generated by a rotational shearing interferometer. Appl. Opt. 1989, 28, 4987–4991. [Google Scholar] [CrossRef]
- Kim, S.-G.; Lee, B.; Kim, E.-S. Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram. Appl. Opt. 1997, 36, 4784–4791. [Google Scholar] [CrossRef]
- Naik, D.N.; Pedrini, G.; Osten, W. Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell. Opt. Express 2013, 21, 3990–3995. [Google Scholar] [CrossRef]
- Pedrini, G.; Li, H.; Faridian, A.; Osten, W. Digital holography of self-luminous objects by using a mach–zehnder setup. Opt. Lett. 2012, 37, 713–715. [Google Scholar] [CrossRef]
- Kim, M.K. Adaptive optics by incoherent digital holography. Opt. Lett. 2012, 37, 2694–2696. [Google Scholar] [CrossRef]
- Kim, M.K. Full color natural light holographic camera. Opt. Express 2013, 21, 9636–9642. [Google Scholar] [CrossRef]
- Sirat, G.; Psaltis, D. Conoscopic holography. Opt. Lett. 1985, 10, 4–6. [Google Scholar] [CrossRef]
- Rosen, J.; Brooker, G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007, 32, 912–914. [Google Scholar] [CrossRef]
- Brooker, G.; Siegel, N.; Wang, V.; Rosen, J. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy. Opt. Express 2011, 19, 5047–5062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, J.; Kelner, R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express 2014, 22, 29048–29066. [Google Scholar] [CrossRef] [Green Version]
- Tahara, T.; Kanno, T.; Arai, Y.; Ozawa, T. Single-shot phase-shifting incoherent digital holography. J. Opt. 2017, 19, 065705. [Google Scholar] [CrossRef]
- Tahara, T.; Kozawa, Y.; Ishii, A.; Wakunami, K.; Ichihashi, Y.; Oi, R. Two-step phase-shifting interferometry for self-interference digital holography. Opt. Lett. 2021, 46, 669–672. [Google Scholar] [CrossRef]
- Brooker, G.; Siegel, N.; Rosen, J.; Hashimoto, N.; Kurihara, M.; Tanabe, A. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens. Opt. Lett. 2013, 38, 5264–5267. [Google Scholar] [CrossRef] [Green Version]
- Siegel, N.; Lupashin, V.; Storrie, B.; Brooker, G. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers. Nat. Photonics 2016, 10, 802–808. [Google Scholar] [CrossRef] [Green Version]
- Siegel, N.; Brooker, G. Single shot holographic super-resolution microscopy. Opt. Express 2021, 29, 15953–15968. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, A.; Katkus, T.; Lundgaard, S.; Linklater, D.P.; Ivanova, E.P.; Ng, S.H.; Juodkazis, S. Fresnel incoherent correlation holography with single camera shot. Opto-Electron Adv. 2020, 3, 200004. [Google Scholar] [CrossRef]
- Kiss, M.Z. Ring-shaped bifocal lens used for fluorescent self-referenced holographic imaging. J. Eur. Opt. Soc. 2016, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Huang, L.; Li, X.; Li, X.; Geng, G.; An, K.; Li, Z.; Wang, Y. All-dielectric bifocal isotropic metalens for a single-shot hologram generation device. Opt. Express 2020, 28, 21549–21559. [Google Scholar] [CrossRef]
- Choi, K.; Yim, J.; Yoo, S.; Min, S.W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett. 2017, 42, 3940–3943. [Google Scholar] [CrossRef]
- Choi, K.; Yim, J.; Min, S.W. Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens. Opt. Express 2018, 26, 16212–16225. [Google Scholar] [CrossRef]
- Choi, K.; Joo, K.I.; Lee, T.H.; Kim, H.R.; Yim, J.; Do, H.; Min, S.W. Compact self-interference incoherent digital holographic camera system with real-time operation. Opt. Express 2019, 27, 4818–4833. [Google Scholar] [CrossRef]
- Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett. 1997, 22, 1268–1270. [Google Scholar] [CrossRef]
- Weng, J.; Clark, D.C.; Kim, M.K. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography. Opt. Commun. 2016, 366, 88–93. [Google Scholar] [CrossRef]
- Cossairt, O.; He, K.; Shang, R.; Matsuda, N.; Sharma, M.; Huang, X.; Yoo, S. Compressive reconstruction for 3d incoherent holographic microscopy. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 958–962. [Google Scholar]
- Kelner, R.; Katz, B.; Rosen, J. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system. Optica 2014, 1, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Brady, D.J.; Choi, K.; Marks, D.L.; Horisaki, R.; Lim, S. Compressive holography. Opt. Express 2009, 17, 13040–13049. [Google Scholar] [CrossRef]
- Lim, S.; Marks, D.L.; Brady, D.J. Sampling and processing for compressive holography. Appl. Opt. 2011, 50, H75–H86. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Liao, T.; Cui, X. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Opt. Commun. 2018, 411, 93–100. [Google Scholar] [CrossRef]
- Lee, G.Y.; Hong, J.Y.; Hwang, S.; Moon, S.; Kang, H.; Jeon, S.; Lee, B. Metasurface eyepiece for augmented reality. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chen, M.K.; Kuo, H.Y.; Tsai, D.P. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018, 13, 227–232. [Google Scholar] [CrossRef]
- Ozaktas, H.; Zalevsky, Z.; Kutay, M.A. The Fractional Fourier Transform with Applications in Optics and Signal Processing; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Hwi, K.; Junghyun, P.; Byoungho, L. Fourier Modal Method and Its Applications in Computational Nanophotonics; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Bioucas-Dias, J.M.; Figueiredo, M.A. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process 2007, 16, 2992–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D 1992, 60, 259–268. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, Y.; Choi, K.; Hahn, J.; Min, S.-W.; Kim, H. Digital Incoherent Compressive Holography Using a Geometric Phase Metalens. Sensors 2021, 21, 5624. https://doi.org/10.3390/s21165624
Lee J, Kim Y, Choi K, Hahn J, Min S-W, Kim H. Digital Incoherent Compressive Holography Using a Geometric Phase Metalens. Sensors. 2021; 21(16):5624. https://doi.org/10.3390/s21165624
Chicago/Turabian StyleLee, Jonghyun, Youngrok Kim, Kihong Choi, Joonku Hahn, Sung-Wook Min, and Hwi Kim. 2021. "Digital Incoherent Compressive Holography Using a Geometric Phase Metalens" Sensors 21, no. 16: 5624. https://doi.org/10.3390/s21165624
APA StyleLee, J., Kim, Y., Choi, K., Hahn, J., Min, S. -W., & Kim, H. (2021). Digital Incoherent Compressive Holography Using a Geometric Phase Metalens. Sensors, 21(16), 5624. https://doi.org/10.3390/s21165624