A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus and Procedure
2.3. Fabrication of Modified Electrodes for Electrochemical Studies
3. Results
3.1. Characterization of GC/Cu-YBDC and GC/Au/Cu-YBDC Electrodes
3.2. Electrochemical Determination of Nitrites
3.3. Chronoamperometric Determination of Nitrite on GC/Au/Cu-YBDC Sensor
3.4. Electrochemical Stability and Reproducibility Study of GC/Au/Cu-YBDC Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cirujano, F.G.; Martin, N.; Wee, L.H. Design of hierarchical architectures in metal-oganic frameworks for catalysis and adsorption. Chem. Mater. 2020, 32, 10268–10295. [Google Scholar] [CrossRef]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.H.; Long, J.R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhian, S.; Ezzati, M.; Hosseini, H. Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta 2020, 210, 120696. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Y.; Yang, P.; Chen, Y.; Tao, J.; Hu, J.; Zhao, P. Carbon nanohorns enhanced electrochemical properties of Cu-based metal organic framework for ultrasensitive serum glucose sensing. J. Electroanal. Chem. 2020, 862, 114018. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Zhai, Y.; Zhang, Z.; Liu, H.; Li, L.; Wen, H. Facile preparation of well conductive 2D MOF for nonenzymatic detection of hydrogen peroxide: Relationship between electrocatalysis and metal center. J. Electroanal. Chem. 2020, 858, 113804. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, J.; Pang, H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 2020, 410, 213222. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Wang, N.; Xu, Q.Q.; Xu, L.; Lin, M. Copper-based metal-organic framework for non-enzymatic electrochemical detection of glucose. Electroanalysis 2018, 30, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Zhang, J.; Zhang, R.; Shi, H.; Guo, X.; Guo, Y.; Guo, X.; Cai, S.; Zhang, D. Electrochemical and electrocatalytic properties of a stable cu-based metal-organic framework. Int. J. Electrochem. Sci. 2015, 10, 4899–4910. [Google Scholar]
- Zheng, T.; Lu, X.; Bian, X.; Zhang, C.; Xue, Y.; Jia, X.; Wang, C. Fabrication of ternary CNT/PPy/KxMnO2 composite nanowires for electrocatalytic applications. Talanta 2012, 90, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Tadjarodi, A.; Fakhari, A.R. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens. Bioelectron. 2013, 42, 426–429. [Google Scholar] [CrossRef]
- Yadav, D.K.; Ganesan, V.; Sonkar, P.K.; Gupta, R.; Rastogi, P.K. Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim. Acta 2016, 200, 276–282. [Google Scholar] [CrossRef]
- He, B.; Yan, D. Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control 2019, 103, 70–77. [Google Scholar] [CrossRef]
- Chen, H.; Yang, T.; Liu, F.; Li, W. Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens. Actuators B Chem. 2019, 286, 401–407. [Google Scholar] [CrossRef]
- Brender, J.D.; Olive, J.M.; Felkner, M.; Suarez, L.; Marckwardt, W.; Hendricks, K.A. Dietary nitrites and nitrates, nitrosatable drugs, and neural tube defects. Epidemiology 2004, 15, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Kroupova, H.; Machova, J.; Svobodova, Z. Nitrite influence on fish: A review. Vet. Med. 2005, 50, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Dou, X.; Li, H.; Ma, Y.; Lin, J.M. Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate. Talanta 2015, 132, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Yu, L.J.; Liu, Y.; Lin, L.; Lu, R.G.; Zhu, J.P.; He, L.; Lu, Z.L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ping, J.; Ying, Y. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrACTrends Anal. Chem. 2019, 113, 1–12. [Google Scholar] [CrossRef]
- Liu, Z.; Manikandan, V.S.; Chen, A. Recent advances in nanomaterial-based electrochemical sensing of nitric oxide and nitrite for biomedical and food research. Curr. Opin. Electrochem. 2019, 16, 127–133. [Google Scholar] [CrossRef]
- Mahmud, M.A.P.; Ejeian, F.; Azadi, S.; Myers, M.; Pejcic, B.; Abbassi, R.; Razmjou, A.; Asadnia, M. Recent progress in sensing nitrate, nitrite, phosphate, and ammonium in aquatic environment. Chemosphere 2020, 259, 127492. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, J.; Wang, K.; Chen, P.; Ji, L. Electrocatalysis and detection of nitrite on a polyaniline-Cu nanocomposite-modified glassy carbon electrode. J. Appl. Polym. Sci. 2013, 128, 2971–2976. [Google Scholar] [CrossRef]
- Peng, Z.W.; Yuan, D.; Jiang, Z.W.; Li, Y.F. Novel metal-organic gels of bis(benzimidazole)-based ligands with copper(II) for electrochemical selectively sensing of nitrite. Electrochim. Acta 2017, 238, 1–8. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, J.; Zhang, R.; Shi, H.; Wang, N.; Li, J.; Ma, F.; Zhang, D. Cu-based metal-organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens. Actuators B Chem. 2016, 222, 632–637. [Google Scholar] [CrossRef]
- Saraf, M.; Rajak, R.; Mobin, S.M. A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A 2016, 4, 16432–16445. [Google Scholar] [CrossRef]
- Akbarzadeh, E.; Soheili, H.Z.; Hosseinifard, M.; Gholami, M.R. Preparation and characterization of novel Ag3VO4/Cu-MOF/rGO heterojunction for photocatalytic degradation of organic pollutants. Mater. Res. Bull. 2020, 121, 110621. [Google Scholar] [CrossRef]
- Cassani, M.C.; Gambassi, F.; Ballarin, B.; Nanni, D.; Ragazzini, I.; Barreca, D.; Maccato, C.; Guagliardi, A.; Masciocchi, N.; Kovtun, A.; et al. A Cu(ii)-MOF based on a propargyl carbamate-functionalized isophthalate ligand. RSC Adv. 2021, 11, 20429–20438. [Google Scholar] [CrossRef]
- Loera-Serna, S.; Oliver-Tolentino, M.A.; De Lourdes López-Núñez, M.; Santana-Cruz, A.; Guzmán-Vargas, A.; Cabrera-Sierra, R.; Beltrán, H.I.; Flores, J. Electrochemical behavior of [Cu3(BTC)2] metal-organic framework: The effect of the method of synthesis. J. Alloys Compd. 2012, 540, 113–120. [Google Scholar] [CrossRef]
- Manoj, D.; Saravanan, R.; Santhanalakshmi, J.; Agarwal, S.; Gupta, V.K.; Boukherroub, R. Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor. Sens. Actuators B Chem. 2018, 266, 873–882. [Google Scholar] [CrossRef]
- Mo, R.; Wang, X.; Yuan, Q.; Yan, X.; Su, T.; Feng, Y.; Lv, L.; Zhou, C.; Hong, P.; Sun, S.; et al. Electrochemical determination of nitrite by au nanoparticle/graphene-chitosan modified electrode. Sensors 2018, 18, 1986. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Bao, Y.; Han, D.X.; Zhao, B. Research progress on nitrite electrochemical sensor. Chin. J. Anal. Chem. 2018, 46, 147–155. [Google Scholar] [CrossRef]
- Tau, P.; Nyokong, T. Electrocatalytic activity of arylthio tetra-substituted oxotitanium(IV) phthalocyanines towards the oxidation of nitrite. Electrochim. Acta 2007, 52, 4547–4553. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Nitrate and Nitrite in Drinking Water: Background Document for Development of WHO Guidelines for Drinking Water Quality. Available online: https://apps.who.int/iris/handle/10665/75380 (accessed on 1 March 2020).
- Peng, L.; Dong, S.; Li, N.; Suo, G.; Huang, T. Construction of a biocompatible system of hemoglobin based on AuNPs-carbon aerogel and ionic liquid for amperometric biosensor. Sens. Actuators B Chem. 2015, 210, 418–424. [Google Scholar] [CrossRef]
- Ashok Kumar, S.; Lo, P.-H.; Chen, S.-M. Electrochemical analysis of H2O2 and nitrite using copper nanoparticles/poly(o-phenylenediamine) film modified glassy carbon electrode. J. Electrochem. Soc. 2009, 156, E118. [Google Scholar] [CrossRef]
- Wang, J.; Xu, G.; Wang, W.; Xu, S.; Luo, X. Nitrite oxidation with copper-cobalt nanoparticles on carbon nanotubes doped conducting polymer pedot composite. Chem. Asian J. 2015, 10, 1892–1897. [Google Scholar] [CrossRef]
- Zhang, S.; Li, B.; Sheng, Q.; Zheng, J. Electrochemical sensor for sensitive determination of nitrite based on the CuS-MWCNT nanocomposites. J. Electroanal. Chem. 2016, 769, 118–123. [Google Scholar] [CrossRef]
- Kung, C.W.; Chang, T.H.; Chou, L.Y.; Hupp, J.T.; Farha, O.K.; Ho, K.C. Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection. Electrochem. Commun. 2015, 58, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Kozub, B.R.; Rees, N.; Compton, R.G. Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens. Actuators B Chem. 2010, 143, 539–546. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Li, D.; Wei, Q. A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids Surfaces B Biointerfaces 2020, 186, 110683. [Google Scholar] [CrossRef]
- Luo, Y.-K.; Song, F.; Wang, X.-L.W.; Wang, Y.-Z. Pure copper phosphate nanostructures with controlled growth: A versatile support for enzyme immobilization. CrystEngComm 2017, 19, 2996–3002. [Google Scholar] [CrossRef]
GC | GC/Cu-YBDC | GC/Au/Cu-YBDC | |
---|---|---|---|
R1 (Ω) | 123.5 (±0.9) | 137.3 (±0.8) | 131.1 (±0.5) |
CPE1 (Ω−1 sn1) | 3.47 (±0.1) × 10−6 | 2.09 (±0.1) × 10−6 | 3.22 (±0.1) × 10−6 |
n1 | 0.777 (±0.004) | 0.829 (±0.005) | 0.817 (±0.004) |
R2 (Ω) | 625.0 (±7.0) | 800.1 (±9.0) | 502.0 (±4.5) |
CPE2 (Ω−1 sn2) | 2.15 (±0.002) × 10−4 | 1.84 (±0.002) × 10−4 | 2.15 (±0.002) × 10−4 |
n2 | 0.533 (±0.004) | 0.577 (±0.006) | 0.571 (±0.003) |
Electrodes | Linearity Range (μM) | Sensitivity (μA mM−1cm−2) | LOD (μM) | Ref. |
---|---|---|---|---|
GC/Au/Cu-YBDC | 20–160 160–1200 1200–8000 | 129.6 | 5.0 | This work |
Au/Cu-MOF/CPE | 0.05–712.2 | ---- | 0.03 | [23] |
Au-CA/IL/Hb/CPE | 5–1320 | ---- | 1.3 | [33] |
Cu-MOF/Au/GCE | 0.1–4000 4000–10,000 | ---- | 0.092 | [13] |
Au/ERGO/Cu-TDPAT/GCE | 0.001–1000 | ---- | 0.006 | [12] |
Cu-NPs/PoPD/GCE | 5–22,000 | ---- | 5.0 | [34] |
Cu-Co/PEDOT/CNTs/GC | 0.5–430 | ---- | 0.06 | [35] |
CuS/MWCNTs/GC | 1–8000 | 131.2 | 0.33 | [36] |
MOX/GCE | 2–120 | ---- | 0.86 | [22] |
MOF-525/FTO | 20–800 | 95 | 2.1 | [37] |
Cu-MOF/rGO hybrid | 3–40,000 | 43.7 | 0.033 | [24] |
Cu/MWCNTs/GC | 5–1260 | 455.8 | 1.8 | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassani, M.C.; Castagnoli, R.; Gambassi, F.; Nanni, D.; Ragazzini, I.; Masciocchi, N.; Boanini, E.; Ballarin, B. A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor. Sensors 2021, 21, 4922. https://doi.org/10.3390/s21144922
Cassani MC, Castagnoli R, Gambassi F, Nanni D, Ragazzini I, Masciocchi N, Boanini E, Ballarin B. A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor. Sensors. 2021; 21(14):4922. https://doi.org/10.3390/s21144922
Chicago/Turabian StyleCassani, Maria Cristina, Riccardo Castagnoli, Francesca Gambassi, Daniele Nanni, Ilaria Ragazzini, Norberto Masciocchi, Elisa Boanini, and Barbara Ballarin. 2021. "A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor" Sensors 21, no. 14: 4922. https://doi.org/10.3390/s21144922
APA StyleCassani, M. C., Castagnoli, R., Gambassi, F., Nanni, D., Ragazzini, I., Masciocchi, N., Boanini, E., & Ballarin, B. (2021). A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor. Sensors, 21(14), 4922. https://doi.org/10.3390/s21144922