Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material and Bruising Experiment
2.2. Hyperspectral Imaging System
2.3. Image Acquisition
2.4. Image Analysis
2.5. Bruise Detection
2.6. Description of Classification Learners
3. Results
3.1. Spectral Characteristics
3.2. Spatial Characteristics
3.3. Latent Bruise Detection Models
3.4. Influence of Temporal Evolution on Detection of Latent Bruises
3.5. Quantitative Prediction of Latent Bruises
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, N.; Elmasry, G. CHAPTER 9—Bruise Detection of Apples Using Hyperspectral Imaging. In Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2010; pp. 295–320. [Google Scholar] [CrossRef]
- Opara, U.L. Bruise susceptibilities of ‘Gala’ apples as affected by orchard management practices and harvest date. Postharvest Biol. Technol. 2007, 43, 47–54. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.; Opara, U.L. Preharvest factors influencing bruise damage of fresh fruits—A review. Sci. Hortic. 2018, 229, 45–58. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.; Opara, U.L. Harvest and Postharvest Factors Affecting Bruise Damage of Fresh Fruits. Hortic. Plant J. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.A.; Opara, U.L. Investigating bruise susceptibility of pomegranate cultivars during postharvest handling. Afr. J. Rural. Dev. 2017, 2, 33–39. [Google Scholar]
- Opara, I.K.; Fawole, O.A.; Opara, U.L. Postharvest Losses of Pomegranate Fruit at the Packhouse and Implications for Sustainability Indicators. Sustainability 2021, 13, 5187. [Google Scholar] [CrossRef]
- Opara, I.; Fawole, O.; Kelly, C.; Opara, U. Quantification of On-Farm Pomegranate Fruit Postharvest Losses and Waste, and Implications on Sustainability Indicators: South African Case Study. Sustainability 2021, 13, 5168. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.A.; Opara, U.L. Bruise damage susceptibility of pomegranates (Punica granatum, L.) and impact on fruit physiological response during short term storage. Sci. Hortic. 2019, 246, 664–674. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.A.; Opara, U.L. Determination of physical, biochemical and microstructural changes in impact-bruise damaged pomegranate fruit. J. Food Meas. Charact. 2019, 13, 2177–2189. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I.; Nieuwoudt, H.H.; Perold, W.J.; Opara, U.L. Detecting Bruise Damage and Level of Severity in Apples Using a Contactless NIR Spectrometer. Appl. Eng. Agric. 2020, 36, 257–270. [Google Scholar] [CrossRef]
- Li, Z.; Thomas, C. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I.; Perold, W.J.; Opara, U.L. A Squid-Detected NMR Relaxation Study of Banana Fruit Ripening. Appl. Eng. Agric. 2021, 37, 219–231. [Google Scholar] [CrossRef]
- Rivera, N.V.; Gómez-Sanchis, J.; Pérez, J.J.C.; Carrasco, J.J.; Millán-Giraldo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Huang, W. Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Postharvest Biol. Technol. 2018, 135, 104–113. [Google Scholar] [CrossRef]
- Baranowski, P.; Mazurek, W.; Witkowska-Walczak, B.; Sławiński, C. Detection of early apple bruises using pulsed-phase thermography. Postharvest Biol. Technol. 2009, 53, 91–100. [Google Scholar] [CrossRef]
- Baranowski, P.; Mazurek, W.; Pastuszka-Woźniak, J.; Majewska, U. Detection of early bruises in apples using hyperspectral data and thermal imaging. J. Food Eng. 2012, 110, 345–355. [Google Scholar] [CrossRef]
- Keresztes, J.C.; Goodarzi, M.; Saeys, W. Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques. Food Control 2016, 66, 215–226. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; Vigneault, C.; Qiao, J.; El-Sayed, A. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT 2008, 41, 337–345. [Google Scholar] [CrossRef]
- Abedi, G.; Ahmadi, E. Design and evaluation a pendulum device to study postharvest mechanical damage in fruits: Bruise modeling of red delicious apple. Aust. J. Crop Sci. 2013, 7, 962–968. [Google Scholar]
- Nturambirwe, J.F.I.; Opara, U.L. Machine learning applications to non-destructive defect detection in horticultural products. Biosyst. Eng. 2020, 189, 60–83. [Google Scholar] [CrossRef]
- Saeys, W.; Trong, N.N.D.; Van Beers, R.; Nicolaï, B.M. Multivariate calibration of spectroscopic sensors for postharvest quality evaluation: A review. Postharvest Biol. Technol. 2019, 158, 110981. [Google Scholar] [CrossRef]
- Calvini, R.; Foca, G.; Ulrici, A. Data dimensionality reduction and data fusion for fast characterization of green coffee samples using hyperspectral sensors. Anal. Bioanal. Chem. 2016, 408, 7351–7366. [Google Scholar] [CrossRef]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. A contemporary review on Data Preprocessing (DP) practice strategy in ATR-FTIR spectrum. Chemom. Intell. Lab. Syst. 2017, 163, 64–75. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, H.; Tu, S.; Sun, K.; Pan, L.; Tu, K. Detecting decayed peach using a rotating hyperspectral imaging testbed. LWT 2018, 87, 326–332. [Google Scholar] [CrossRef]
- Elmasry, G.; Kamruzzaman, M.; Sun, D.-W.; Allen, P. Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I.; Perold, W.J.; Opara, U.L. Near infrared spectrometric technique for testing fruit quality: Optimisation of regression models using genetic algorithms. In Proceedings of the Fourth Conference on Sensors MEMS, and Electro-Optic Systems, Skukuza, South Africa, 18–20 September 2016; Volume 10036, p. 100360. [Google Scholar] [CrossRef]
- Ferrari, C.; Foca, G.; Ulrici, A. Handling large datasets of hyperspectral images: Reducing data size without loss of useful information. Anal. Chim. Acta 2013, 802, 29–39. [Google Scholar] [CrossRef]
- Ferrari, C.; Calvini, R.; Foca, G.; Ulrici, A. Exploration of datasets of hyperspectral images. In Proceedings of the IASIM-14, Roma, Italy, 3–5 December 2014; Volume 1, p. 15. [Google Scholar]
- Samanta, B.; Al-Balushi, K.; Al-Araimi, S. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng. Appl. Artif. Intell. 2003, 16, 657–665. [Google Scholar] [CrossRef]
- Huang, M.-L.; Hung, Y.-H.; Lee, W.M.; Li, R.K.; Jiang, B.-R. SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier. Sci. World J. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine learning based hyperspectral image analysis: A survey. arXiv 2018, arXiv:1802.08701v1. [Google Scholar]
- Kuzy, J.; Jiang, Y.; Li, C. Blueberry bruise detection by pulsed thermographic imaging. Postharvest Biol. Technol. 2018, 136, 166–177. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Monarca, D.; Cecchini, M.; Massantini, R. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit. Postharvest Biol. Technol. 2016, 120, 204–212. [Google Scholar] [CrossRef]
- Naik, S.; Patel, B. Machine Vision based Fruit Classification and Grading—A Review. Int. J. Comput. Appl. 2017, 170, 22–34. [Google Scholar] [CrossRef]
- Brito, A.L.B.; Brito, L.R.; Honorato, F.A.; Pontes, M.J.C.; Pontes, L.F.B.L. Classification of cereal bars using near infrared spectroscopy and linear discriminant analysis. Food Res. Int. 2013, 51, 924–928. [Google Scholar] [CrossRef] [Green Version]
- Naik, H.S.; Zhang, J.; Lofquist, A.; Assefa, T.; Sarkar, S.; Ackerman, D.; Singh, A.; Singh, A.K.; Ganapathysubramanian, B. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 2017, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Ashour, A.S.; Guo, Y.; Hawas, A.R.; Xu, G. Ensemble of subspace discriminant classifiers for schistosomal liver fibrosis staging in mice microscopic images. Health Inf. Sci. Syst. 2018, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Moretti, C.L.; Baldwin, E.A.; Sargent, S.A.; Huber, D.J. Internal Bruising Alters Aroma Volatile Profiles in Tomato Fruit Tissues. HortScience 2002, 37, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Lu, R. Detection of bruises on apples using near-infrared hyperspectral imaging. Trans. Am. Soc. Agric. Eng. 2003, 46, 523. [Google Scholar] [CrossRef]
- Siedliska, A.; Baranowski, P.; Mazurek, W. Classification models of bruise and cultivar detection on the basis of hyperspectral imaging data. Comput. Electron. Agric. 2014, 106, 66–74. [Google Scholar] [CrossRef]
- Ferrari, C.; Foca, G.; Calvini, R.; Ulrici, A. Fast exploration and classification of large hyperspectral image datasets for early bruise detection on apples. Chemom. Intell. Lab. Syst. 2015, 146, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Che, W.; Sun, L.; Zhang, Q.; Tan, W.; Ye, D.; Zhang, D.; Liu, Y. Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging. Comput. Electron. Agric. 2018, 146, 12–21. [Google Scholar] [CrossRef]
- Ren, Y.; Romano, Y.; Elad, M. Example-Based Image Synthesis via Randomized Patch-Matching. IEEE Trans. Image Process. 2017, 27, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Tian, X.; Yang, M.; Wu, Y.; Su, H. PAC-Bayesian framework based drop-path method for 2D discriminative con-volutional network pruning. Multidimens. Syst. Signal. Process. 2020, 31, 793–827. [Google Scholar] [CrossRef]
- Magwaza, L.; Opara, U.L.; Terry, L.; Landahl, S.; Cronje, P.J.; Nieuwoudt, H.H.; Hanssens, A.; Saeys, W.; Nicolaï, B.M. Evaluation of Fourier transform-NIR spectroscopy for integrated external and internal quality assessment of Valencia oranges. J. Food Compos. Anal. 2013, 31, 144–154. [Google Scholar] [CrossRef]
- Suh, H.K.; Ijsselmuiden, J.; Hofstee, J.W.; Van Henten, E.J. Transfer learning for the classification of sugar beet and volunteer potato under field conditions. Biosyst. Eng. 2018, 174, 50–65. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Guyer, D.E.; Pease, A. Postharvest noninvasive classification of tough-fibrous asparagus using computed tomography images. Postharvest Biol. Technol. 2016, 121, 27–35. [Google Scholar] [CrossRef]
- Georgouli, K.; Osorio, M.T.; Del Rincon, J.M.; Koidis, A. Data augmentation in food science: Synthesising spectroscopic data of vegetable oils for performance enhancement. J. Chemom. 2018, 32, e3004. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, B.; Gou, J. Learning double weights via data augmentation for robust sparse and collaborative representation-based classification. Multimed. Tools Appl. 2020, 79, 20617–20638. [Google Scholar] [CrossRef]
Bruising Parameters | Number of Individual Bruises | Total Number of Bruise Samples | |||||
---|---|---|---|---|---|---|---|
Drop Height (m) | Bruise Level Notation | Energy of Impact (J) | Batch 1 | Times Scanned | Batch 2 | Times Scanned | |
0.020 | L1 | 0.013 | 6 | 4 | 6 | 2 | 36 |
0.040 | L2 | 0.025 | 6 | 4 | 6 | 2 | 36 |
0.07 | L3 | 0.044 | 6 | 4 | 6 | 2 | 36 |
0.126 | L4 | 0.079 | 6 | 4 | 6 | 1 | 30 |
0.219 | L5 | 0.137 | 6 | 3 | 6 | 1 | 24 |
0.319 | L6 | 0.2 | 6 | 3 | 6 | 1 | 24 |
TOTAL | 186 |
Training Accuracy (%) | AUC | Test Accuracy (%) | Prediction Speed (Observations/s) | Classification Learner | |
---|---|---|---|---|---|
Detect L1 | 100 | 1 | 94.4 | 4200 | Q-SVM |
99.1 | 0.99 | 89.9 | 2200 | F-KNN | |
99.4 | 1 | 89.9 | 2200 | LDA | |
99.6 | 1 | 100 | 400 | ESD | |
Detect L2 | 100 | 1.00 | 100 | 2700 | Q-SVM |
98.4 | 0.98 | 94.4 | 1500 | F-KNN | |
98.8 | 1.00 | 100 | 3600 | LDA | |
99.6 | 1 | 100 | 400 | ESD | |
Overall model | 100 | 1.00 | 100 | 1900 | Q-SVM |
98.7 | 0.98 | 96.2 | 1600 | F-KNN | |
99.6 | 1.00 | 96.2 | 1800 | LDA | |
99.6 | 1.00 | 100 | 440 | ESD |
Model | Training Accuracy (%) | Test Accuracy (%) | Prediction Speed (Normalized) * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 h | 6 h | 18 h | 48 h | 1 h | 6 h | 18 h | 48 h | 1 h | 6 h | 18 h | 48 h | |
LDA | 98.7 | 94.8 | 99.4 | 95.5 | 94.4 | 100 | 88.9 | 100 | 0.78 | 0.56 | 1 | 0.50 |
F-KNN | 98.7 | 98.7 | 95.5 | 96.1 | 88.9 | 94.4 | 100 | 100 | 0.61 | 0.42 | 0.52 | 0.68 |
Q-SVM | 99.4 | 99.4 | 99.4 | 99.4 | 100 | 100 | 100 | 100 | 1 | 1 | 1 | 1 |
ESD | 100 | 97.4 | 98.7 | 98.7 | 94.4 | 100 | 100 | 100 | 0.16 | 0.16 | 0.11 | 0.16 |
Bruise Level | Classification Accuracy | Classifier | |
---|---|---|---|
Training | Test | ||
L11–L31 | 69.8 | 66.67 | F-KNN |
93.7 | 88.89 | ESD | |
89.3 | 77.78 | LDA | |
L16–L36 | 69.5 | 44.4 | F-KNN |
92.1 | 88.89 | ESD | |
90.4 | 66.67 | LDA | |
L118–L318 | 66.9 | 88.89 | F-KNN |
94.4 | 77.78 | ESD | |
87.6 | 77.78 | LDA | |
Global L1–L6 | 75.8 | 48.15 | F-KNN |
98.5 | 62.96 | ESD | |
97.0 | 74.07 | LDA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nturambirwe, J.F.I.; Perold, W.J.; Opara, U.L. Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging. Sensors 2021, 21, 4990. https://doi.org/10.3390/s21154990
Nturambirwe JFI, Perold WJ, Opara UL. Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging. Sensors. 2021; 21(15):4990. https://doi.org/10.3390/s21154990
Chicago/Turabian StyleNturambirwe, Jean Frederic Isingizwe, Willem Jacobus Perold, and Umezuruike Linus Opara. 2021. "Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging" Sensors 21, no. 15: 4990. https://doi.org/10.3390/s21154990
APA StyleNturambirwe, J. F. I., Perold, W. J., & Opara, U. L. (2021). Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging. Sensors, 21(15), 4990. https://doi.org/10.3390/s21154990