Federated Semi-Supervised Multi-Task Learning to Detect COVID-19 and Lungs Segmentation Marking Using Chest Radiography Images and Raspberry Pi Devices: An Internet of Medical Things Application
Abstract
:1. Introduction
2. Related Works
3. Methods and Materials
3.1. Data
3.2. Federated Learning
3.2.1. Simple Averaging (‘Simple’)
3.2.2. Standard Deviation Based Weighted Averaging (‘std_dev’)
3.3. Semi-Supervised Multi-Task Learning
4. Experimental Setup
4.1. Experiments
4.1.1. Semi-Supervised Federated Learning
4.1.2. Semi-Supervised Federated Learning with Transfer Learning
4.2. Evaluation Metrics
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoMT | Internet of Medical Things |
FL | Federated Learning |
SSL | Semi-supervised Learning |
TL | Transfer Learning |
COVID-19 | Coronavirus Disease 2019 |
[Official name for the disease caused by the SARS-CoV-2 (2019-nCoV) coronavirus] | |
JSRT | Japanese Society of Radiological Technology |
LTS | Long Term Support |
GPU | Graphics Processing Unit |
CPU | Central Processing Unit |
AUI | Adaptive User Interface |
References
- Irfan, M.; Ahmad, N. Internet of medical things: Architectural model, motivational factors and impediments. In Proceedings of the 2018 15th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 25–26 February 2018; pp. 6–13. [Google Scholar]
- Joyia, G.J.; Liaqat, R.M.; Farooq, A.; Rehman, S. Internet of Medical Things (IOMT): Applications, benefits and future challenges in healthcare domain. J. Commun. 2017, 12, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Manogaran, G.; Chilamkurti, N.; Hsu, C.H. Emerging trends, issues, and challenges in Internet of Medical Things and wireless networks. Pers. Ubiquitous Comput. 2018, 22, 879–882. [Google Scholar] [CrossRef] [Green Version]
- Estrela, V.V.; Monteiro, A.C.B.; França, R.P.; Iano, Y.; Khelassi, A.; Razmjooy, N. Health 4.0: Applications, management, technologies and review. Med. Technol. J. 2018, 2, 262–276. [Google Scholar]
- Dimitrov, D.V. Medical internet of things and big data in healthcare. Healthc. Inform. Res. 2016, 22, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Sharma, N.; Bhushan, B.; Shankar, A.; Sagayam, M. IoT Enabled Technology in Secured Healthcare: Applications, Challenges and Future Directions. In Cognitive Internet of Medical Things for Smart Healthcare: Services and Applications; Hassanien, A.E., Khamparia, A., Gupta, D., Shankar, K., Slowik, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 25–48. [Google Scholar] [CrossRef]
- Gatouillat, A.; Badr, Y.; Massot, B.; Sejdić, E. Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J. 2018, 5, 3810–3822. [Google Scholar] [CrossRef] [Green Version]
- Durga, S.; Nag, R.; Daniel, E. Survey on machine learning and deep learning algorithms used in internet of things (IoT) healthcare. In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019; pp. 1018–1022. [Google Scholar]
- Moreira, M.W.; Rodrigues, J.J.; Korotaev, V.; Al-Muhtadi, J.; Kumar, N. A comprehensive review on smart decision support systems for health care. IEEE Syst. J. 2019, 13, 3536–3545. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Dinesh, K.; Shishvan, O.R.; Boggio-Dandry, A.; Sharma, G.; Soyata, T. A Survey of Healthcare Internet-of-Things (HIoT): A Clinical Perspective. IEEE Internet Things J. 2019, 7, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Kukhtevich, I.; Goryunova, V.; Goryunova, T.; Zhilyaev, P. Medical Decision Support Systems and Semantic Technologies in Healthcare. In Proceedings of the Russian Conference on Digital Economy and Knowledge Management (RuDEcK 2020), Voronezh, Russia, 27–29 February 2020; Atlantis Press: Dordrecht, The Netherlands, 2020; pp. 370–375. [Google Scholar] [CrossRef]
- Müller, H.; Unay, D. Retrieval From and Understanding of Large-Scale Multi-modal Medical Datasets: A Review. IEEE Trans. Multimed. 2017, 19, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Itani, S.; Lecron, F.; Fortemps, P. Specifics of medical data mining for diagnosis aid: A survey. Expert Syst. Appl. 2019, 118, 300–314. [Google Scholar] [CrossRef]
- Xiao, C.; Choi, E.; Sun, J. Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review. J. Am. Med. Inform. Assoc. 2018, 25, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2018, Volume 10. Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 10 June 2021).
- Yüksel, B.; Küpçü, A.; Özkasap, Ö. Research issues for privacy and security of electronic health services. Future Gener. Comput. Syst. 2017, 68, 1–13. [Google Scholar] [CrossRef]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and open problems in federated learning. arXiv 2019, arXiv:1912.04977. [Google Scholar]
- Briggs, C.; Fan, Z.; Andras, P. A Review of Privacy Preserving Federated Learning for Private IoT Analytics. arXiv 2020, arXiv:2004.11794. [Google Scholar]
- Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated learning for healthcare informatics. J. Healthc. Inform. Res. 2021, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yao, Z.; Yang, Y.; Yan, Y.; Gonzalez, J.E.; Mahoney, M.W. Benchmarking semi-supervised federated learning. arXiv 2020, arXiv:2008.11364. [Google Scholar]
- Chapelle, O.; Scholkopf, B.; Zien, A. Semi-Supervised Learning (Chapelle, O. et al., Eds.; 2006) [Book reviews]. IEEE Trans. Neural Netw. 2009, 20, 542. [Google Scholar] [CrossRef]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Prakash, V.J.; Nithya, D.L. A Survey On Semi-Supervised Learning Techniques. Int. J. Comput. Trends Technol. 2014, 8, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Søgaard, A. Semi-supervised learning and domain adaptation in natural language processing. Synth. Lect. Hum. Lang. Technol. 2013, 6. [Google Scholar] [CrossRef] [Green Version]
- Malte, A.; Ratadiya, P. Evolution of transfer learning in natural language processing. arXiv 2019, arXiv:1910.07370. [Google Scholar]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- CDC COVID-19 Response Team; Bialek, S.; Boundy, E.; Bowen, V.; Chow, N.; Cohn, A.; Dowling, N.; Ellington, S.; Ryan, G.; Aron, H.; et al. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, 12 February–16 March 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Johnston, S.J.; Cox, S.J. The Raspberry Pi: A Technology Disrupter, and the Enabler of Dreams. Electronics 2017, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečný, J.; Mazzocchi, S.; McMahan, H.B.; et al. Towards Federated Learning at Scale: System Design. arXiv 2019, arXiv:1902.01046. [Google Scholar]
- Gao, Y.; Kim, M.; Abuadbba, S.; Kim, Y.; Thapa, C.; Kim, K.; Camtepe, S.A.; Kim, H.; Nepal, S. End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things. arXiv 2020, arXiv:2003.13376. [Google Scholar]
- He, C.; Li, S.; So, J.; Zeng, X.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H.; et al. FedML: A Research Library and Benchmark for Federated Machine Learning. arXiv 2020, arXiv:2007.13518. [Google Scholar]
- Chen, Y.; Qin, X.; Wang, J.; Yu, C.; Gao, W. FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE Intell. Syst. 2020, 35, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Cheplygina, V.; de Bruijne, M.; Pluim, J.P. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 2019, 54, 280–296. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.; Oktay, O.; Sinclair, M.; Suzuki, H.; Rajchl, M.; Tarroni, G.; Glocker, B.; King, A.; Matthews, P.M.; Rueckert, D. Semi-supervised Learning for Network-Based Cardiac MR Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2017; Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 253–260. [Google Scholar]
- Li, X.; Yu, L.; Chen, H.; Fu, C.W.; Heng, P.A. Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model. arXiv 2018, arXiv:1808.03887. [Google Scholar]
- Mlynarski, P.; Delingette, H.; Criminisi, A.; Ayache, N. Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 2019, 6, 034002. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.; Khan, M.S.; et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 2021, 132, 104319. [Google Scholar] [CrossRef]
- Shiraishi, J.; Katsuragawa, S.; Ikezoe, J.; Matsumoto, T.; Kobayashi, T.; Komatsu, K.i.; Matsui, M.; Fujita, H.; Kodera, Y.; Doi, K. Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 2000, 174, 71–74. [Google Scholar] [CrossRef]
- Haque, A.; Imran, A.A.Z.; Wang, A.; Terzopoulos, D. Multimix: Sparingly-Supervised, Extreme Multitask Learning from Medical Images. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 693–696. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Wang, Y.E.; Wei, G.Y.; Brooks, D. Benchmarking TPU, GPU, and CPU Platforms for Deep Learning. arXiv 2019, arXiv:1907.10701. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Hatzivasilis, G.; Soultatos, O.; Ioannidis, S.; Verikoukis, C.; Demetriou, G.; Tsatsoulis, C. Review of security and privacy for the Internet of Medical Things (IoMT). In Proceedings of the 2019 15th international conference on distributed computing in sensor systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 457–464. [Google Scholar]
- Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; García, Á.L.; Heredia, I.; Malík, P.; Hluchỳ, L. Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [Google Scholar] [CrossRef] [Green Version]
- Otebolaku, A.M.; Lee, G.M. Towards context classification and reasoning in IoT. In Proceedings of the 2017 14th International Conference on Telecommunications (ConTEL), Zagreb, Croatia, 28–30 June 2017; pp. 147–154. [Google Scholar]
- Chowdhury, G.G. Natural language processing. Annu. Rev. Inf. Sci. Technol. 2003, 37, 51–89. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.; Malik, M.K.; Mehmood, K.; Makhdoom, I. Automatic speech recognition: A survey. Multimed. Tools Appl. 2021, 80, 9411–9457. [Google Scholar] [CrossRef]
- Goel, A.; Tung, C.; Lu, Y.H.; Thiruvathukal, G.K. A survey of methods for low-power deep learning and computer vision. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6. [Google Scholar]
- Vasilyeva, E.; Pechenizkiy, M.; Puuronen, S. Towards the framework of adaptive user interfaces for eHealth. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05), Dublin, Ireland, 23–24 June 2005; pp. 139–144. [Google Scholar]
- Sonntag, D.; Tresp, V.; Zillner, S.; Cavallaro, A.; Hammon, M.; Reis, A.; Fasching, P.A.; Sedlmayr, M.; Ganslandt, T.; Prokosch, H.U.; et al. The clinical data intelligence project. Inform. Spektrum 2016, 39, 290–300. [Google Scholar] [CrossRef]
- Alam., M.; Henriksson., A.; Tanushi., H.; Thiman., E.; Naucler., P.; Dalianis., H. Terminology Expansion with Prototype Embeddings: Extracting Symptoms of Urinary Tract Infection from Clinical Text. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies—HEALTHINF, INSTICC, Online Streaming, Vienna, Austria, 24–26 February 2021; SciTePress: Setúbal, Portugal, 2021; pp. 47–57. [Google Scholar] [CrossRef]
- van der Werff, S.; Thiman, E.; Tanushi, H.; Valik, J.; Henriksson, A.; Ul Alam, M.; Dalianis, H.; Ternhag, A.; Nauclér, P. The accuracy of fully automated algorithms for surveillance of healthcare-associated urinary tract infections in hospitalized patients. J. Hosp. Infect. 2021, 110, 139–147. [Google Scholar] [CrossRef]
- Alam, M.U.; Rahmani, R. Intelligent context-based healthcare metadata aggregator in internet of medical things platform. Procedia Comput. Sci. 2020, 175, 411–418. [Google Scholar] [CrossRef]
- Alam, M.U.; Rahmani, R. Cognitive Internet of Medical Things Architecture for Decision Support Tool to Detect Early Sepsis Using Deep Learning. In Biomedical Engineering Systems and Technologies; Ye, X., Soares, F., De Maria, E., Gómez Vilda, P., Cabitza, F., Fred, A., Gamboa, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 366–384. [Google Scholar]
- Alam., M.; Henriksson., A.; Valik., J.; Ward., L.; Naucler., P.; Dalianis., H. Deep Learning from Heterogeneous Sequences of Sparse Medical Data for Early Prediction of Sepsis. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies—HEALTHINF, INSTICC, Valletta, Malta, 24–26 February 2020; SciTePress: Setúbal, Portugal, 2020; pp. 45–55. [Google Scholar] [CrossRef]
- Maguolo, G.; Nanni, L. A critic evaluation of methods for COVID-19 automatic detection from X-ray images. Inf. Fusion 2021, 76. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.P.; Dash, D.; Kumar, N. Sensors for internet of medical things: State-of-the-art, security and privacy issues, challenges and future directions. Comput. Commun. 2020, 160, 111–131. [Google Scholar] [CrossRef]
- Murshed, M.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine learning at the network edge: A survey. arXiv 2019, arXiv:1908.00080. [Google Scholar]
Validation Metric | Aggregation Technique | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|---|
loss | std_dev | 0.720 | 0.666 | 0.883 | 0.759 | 0.844 |
loss | simple | 0.680 | 0.637 | 0.833 | 0.722 | 0.769 |
accuracy | std_dev | 0.655 | 0.677 | 0.591 | 0.631 | 0.708 |
accuracy | simple | 0.717 | 0.682 | 0.814 | 0.742 | 0.795 |
Total Epochs | Validation Metric | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|---|
10 | accuracy | 0.647 | 0.780 | 0.410 | 0.538 | 0.767 |
10 | loss | 0.782 | 0.787 | 0.773 | 0.780 | 0.798 |
15 | loss | 0.802 | 0.810 | 0.790 | 0.800 | 0.780 |
15 | accuracy | 0.761 | 0.817 | 0.673 | 0.738 | 0.708 |
5 | loss | 0.697 | 0.804 | 0.521 | 0.632 | 0.785 |
5 | accuracy | 0.625 | 0.618 | 0.655 | 0.636 | 0.737 |
Total Rounds | Validation Metric | Aggregation Technique | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|---|---|
5 | loss | simple | 0.783 | 0.728 | 0.905 | 0.807 | 0.834 |
5 | accuracy | std_dev | 0.778 | 0.761 | 0.812 | 0.786 | 0.828 |
5 | accuracy | simple | 0.762 | 0.787 | 0.718 | 0.751 | 0.827 |
5 | loss | std_dev | 0.740 | 0.667 | 0.959 | 0.787 | 0.842 |
10 | loss | simple | 0.796 | 0.734 | 0.928 | 0.820 | 0.867 |
10 | loss | std_dev | 0.814 | 0.792 | 0.852 | 0.821 | 0.867 |
10 | accuracy | simple | 0.758 | 0.867 | 0.610 | 0.716 | 0.823 |
10 | accuracy | std_dev | 0.771 | 0.877 | 0.630 | 0.733 | 0.837 |
Total Rounds | Validation Metric | Aggregation Technique | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|---|---|
5 | loss | simple | 0.772 | 0.744 | 0.829 | 0.784 | 0.806 |
5 | accuracy | std_dev | 0.809 | 0.770 | 0.881 | 0.822 | 0.807 |
5 | accuracy | simple | 0.730 | 0.664 | 0.931 | 0.775 | 0.812 |
5 | loss | std_dev | 0.749 | 0.688 | 0.912 | 0.784 | 0.815 |
10 | loss | simple | 0.820 | 0.830 | 0.804 | 0.817 | 0.835 |
10 | loss | std_dev | 0.827 | 0.788 | 0.895 | 0.838 | 0.828 |
10 | accuracy | simple | 0.759 | 0.867 | 0.612 | 0.717 | 0.823 |
10 | accuracy | std_dev | 0.769 | 0.875 | 0.628 | 0.732 | 0.837 |
Aggregation Technique | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|
simple | 0.694 | 0.663 | 0.789 | 0.721 | 0.844 |
std_dev | 0.683 | 0.633 | 0.872 | 0.733 | 0.785 |
Initial Training Epochs | Aggregation Technique | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|---|
10 | simple | 0.725 | 0.656 | 0.949 | 0.775 | 0.884 |
15 | simple | 0.760 | 0.697 | 0.920 | 0.793 | 0.855 |
10 | std_dev | 0.723 | 0.651 | 0.964 | 0.777 | 0.883 |
15 | std_dev | 0.761 | 0.699 | 0.917 | 0.793 | 0.854 |
Total Rounds | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|
1 | 0.718 | 0.661 | 0.898 | 0.761 | 0.813 |
2 | 0.704 | 0.641 | 0.927 | 0.758 | 0.823 |
3 | 0.715 | 0.649 | 0.936 | 0.767 | 0.833 |
4 | 0.720 | 0.657 | 0.920 | 0.767 | 0.842 |
5 | 0.717 | 0.653 | 0.924 | 0.765 | 0.850 |
6 | 0.725 | 0.661 | 0.923 | 0.770 | 0.858 |
7 | 0.722 | 0.654 | 0.941 | 0.772 | 0.865 |
8 | 0.716 | 0.651 | 0.931 | 0.766 | 0.871 |
9 | 0.714 | 0.647 | 0.945 | 0.768 | 0.878 |
10 | 0.725 | 0.656 | 0.949 | 0.775 | 0.884 |
Total Rounds | Accuracy | Precision | Recall | Average Dice Score | |
---|---|---|---|---|---|
1 | 0.533 | 0.522 | 0.801 | 0.632 | 0.701 |
2 | 0.552 | 0.549 | 0.584 | 0.566 | 0.733 |
3 | 0.581 | 0.574 | 0.628 | 0.600 | 0.753 |
4 | 0.593 | 0.586 | 0.638 | 0.611 | 0.770 |
5 | 0.624 | 0.610 | 0.691 | 0.648 | 0.786 |
6 | 0.647 | 0.630 | 0.713 | 0.669 | 0.800 |
7 | 0.661 | 0.641 | 0.731 | 0.683 | 0.813 |
8 | 0.678 | 0.654 | 0.756 | 0.701 | 0.825 |
9 | 0.692 | 0.654 | 0.815 | 0.726 | 0.835 |
10 | 0.694 | 0.663 | 0.789 | 0.721 | 0.844 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.U.; Rahmani, R. Federated Semi-Supervised Multi-Task Learning to Detect COVID-19 and Lungs Segmentation Marking Using Chest Radiography Images and Raspberry Pi Devices: An Internet of Medical Things Application. Sensors 2021, 21, 5025. https://doi.org/10.3390/s21155025
Alam MU, Rahmani R. Federated Semi-Supervised Multi-Task Learning to Detect COVID-19 and Lungs Segmentation Marking Using Chest Radiography Images and Raspberry Pi Devices: An Internet of Medical Things Application. Sensors. 2021; 21(15):5025. https://doi.org/10.3390/s21155025
Chicago/Turabian StyleAlam, Mahbub Ul, and Rahim Rahmani. 2021. "Federated Semi-Supervised Multi-Task Learning to Detect COVID-19 and Lungs Segmentation Marking Using Chest Radiography Images and Raspberry Pi Devices: An Internet of Medical Things Application" Sensors 21, no. 15: 5025. https://doi.org/10.3390/s21155025
APA StyleAlam, M. U., & Rahmani, R. (2021). Federated Semi-Supervised Multi-Task Learning to Detect COVID-19 and Lungs Segmentation Marking Using Chest Radiography Images and Raspberry Pi Devices: An Internet of Medical Things Application. Sensors, 21(15), 5025. https://doi.org/10.3390/s21155025