An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills
Abstract
:1. Introduction
2. Experimental Section
2.1. Fabrication of Sensors
2.2. Characterization and Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.; Alaaeldien, T.G. Biomechanical Comparison of Three-Point Shoot after and Before Official Basketball Rules 2010 (6.25 and 6.75 Meters) in Basketball. World J. Sport Sci. 2011, 5, 82–88. [Google Scholar]
- Button, C.; Macleod, M.; Sanders, R.; Coleman, S. Examining movement variability in the basketball free-throw action at different skill levels. Res. Q. Exerc. Sport 2003, 74, 257–269. [Google Scholar] [CrossRef]
- Emel, C.; Muratl, S. Analysis of Jump Shot Performance among 14–15 Year Old Male Basketball Player. Procedia-Soc. Behav. Sci. 2014, 116, 2985–2988. [Google Scholar]
- Caliendo, C.; Laidoudi, F. Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure. Sensors 2020, 20, 1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, B.C.; White, E. A kinematic and kinetic analysis of the female two point and three point jump shots in basketball. Aust. J. Sci. Med. Sport 1989, 21, 7–11. [Google Scholar]
- Wu, T.; Jin, H.; Dong, S.; Xuan, W.; Xu, H.; Lu, L.; Fang, Z.; Huang, S.; Tao, X.; Shi, L.; et al. A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer. Sensors 2020, 20, 1346. [Google Scholar] [CrossRef] [Green Version]
- Pobar, M.; Ivasic-Kos, M. Active Player Detection in Handball Scenes Based on Activity Measures. Sensors 2020, 20, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villacorta, J.J.; Del-Val, L.; Martínez, R.D.; Balmori, J.A.; Magdaleno, Á.; López, G.; Izquierdo, A.; Lorenzana, A.; Basterra, L.A. Design and Validation of a Scalable, Reconfigurable and Low-Cost Structural Health Monitoring System. Sensors 2021, 21, 648. [Google Scholar] [CrossRef]
- Alves, O.; Rodacki, A. Increased distance of shooting on basketball jump shot. J. Sports Sci. Med. 2012, 11, 231–237. [Google Scholar]
- Viggiano, A.; Chieffi, S.; Tafuri, D.; Messina, G.; Monda, M.; Luca, B.D. Laterality of a second player position affects lateral deviation of basketball shooting. J. Sport. Sci. 2014, 32, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Bartlett, R.M. The effects of increased shooting distance in the basketball jump shot. J. Sport. Sci. 1993, 11, 285–293. [Google Scholar] [CrossRef]
- Rojas, F.J.; Cepero, M.; Ona, A. Kinematic adjustments in the basketball jump shot against an opponent. Ergonomics 2000, 43, 1651–1660. [Google Scholar] [CrossRef] [Green Version]
- Mullineaux, D.R.; Uhl, T.L. Coordination-variability and kinematics of misses versus swishes of basketball free throws. J. Sport. Sci. 2010, 28, 1017–1024. [Google Scholar] [CrossRef]
- Malone, L.; Gervais, P.; Steadward, R. Shooting mechanics related to player classification and free throw success in wheelchair basketball. J. Rehabil. Res. Dev. 2002, 39, 701–709. [Google Scholar] [PubMed]
- Chen, S.; Yang, R.; Wu, G.; Wu, C.A. Piezoelectric Wave-Energy Converter Equipped with a Geared-Linkage-Based Frequency Up-Conversion Mechanism. Sensors 2020, 21, 204. [Google Scholar] [CrossRef]
- Struzik, A.; Pietraszewski, B.; Zawadzki, J. Biomechanical Analysis of the Jump Shot in Basketball. J. Hum. Kinet. 2014, 42, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papi, E.; Bo, Y.N.; Mcgregor, A.H. A flexible wearable sensor for knee flexion assessment during gait. Gait Posture 2018, 62, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Singh, P.; Kim, K.S.; Yeom, G.Y.; Nalwa, H.S. Flexible Molybdenum Disulfide (MoS2) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061–11105. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.; Carvalho, J.; Brazaca, L.C.; Vieira, N.; Janegitz, B.C. Flexible platinum electrodes as electrochemical sensor and immunosensor of Parkinson’s disease biomarkers. Biosensors 2020, 152, 112016. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Miao, X.; Niu, L.; Jiang, G.; Ma, P. Human Motion Recognition of Knitted Flexible Sensor in Walking Cycle. Sensors 2020, 20, 35. [Google Scholar] [CrossRef] [Green Version]
- Faraduan, I.; Handayani, I.P.; Diandra, D.A.; Delima, H.; Fathona, I.W. Electronic properties of hybrid WS2/MoS2 multilayer on flexible PET. Mater. Res. Express 2021, 8, 016409. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Z.; Xing, X. A Wireless High-Sensitivity Fetal Heart Sound Monitoring System. Sensors 2020, 21, 193. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yue, W.; Zhao, T.; Shen, M.; Chen, S. A Self-Powered Biosensor for Monitoring Maximal Lactate Steady State in Sport Training. Biosensors 2020, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Zhang, W.; Wang, Y.; Guan, R.; Liu, B.; Wang, X.; Sun, Z.; Xing, L.; Chen, S.; Xue, X. Self-Powered Wearable Athletics Monitoring Nanodevice Based on ZnO Nanowire Piezoelectric-Biosensing Unit Arrays. Sci. Adv. Mater. 2019, 11, 351–359. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. Int. J. Energy Res. 2020, 44, 5545–5563. [Google Scholar] [CrossRef]
- Parangusan, H.; Bhadra, J.; Al-Thani, N. Flexible piezoelectric nanogenerator based on [P(VDF-HFP)]/PANI-ZnS electrospun nanofibers for electrical energy harvesting. J. Mater. Sci. Mater. Electron. 2021, 32, 6358–6368. [Google Scholar] [CrossRef]
- Mistewicz, K. Recent Advances in Ferroelectric Nanosensors: Toward Sensitive Detection of Gas, Mechanothermal Signals, and Radiation. J. Nanomater. 2018, 2018, 2651056. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Z.; Cai, J. A foot pressure sensor based on triboelectric nanogenerator for human motion monitoring. Microsyst. Technol. 2021, 27, 3507–3512. [Google Scholar] [CrossRef]
- Ghosh, R.; Pin, K.Y.; Reddy, V.S.; Jayathilaka, W.; Chinnappan, A. Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Appl. Phys. Rev. 2020, 7, 041309. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Yan, Z.; Wang, F.; Wang, X. Stretchable and Shape-Adaptable Triboelectric Nanogenerator Based on Biocompatible Liquid Electrolyte for Biomechanical Energy Harvesting and Wearable Human–Machine Interaction. Adv. Funct. Mater. 2020, 31, 2007221. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, W.; Deng, Y.; Fu, B.; Guo, J. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 2020, 73, 104773. [Google Scholar] [CrossRef]
- Liu, B.; Shen, M.; Mao, L.; Mao, Y.; Ma, H. Self-powered Biosensor Big Data Intelligent Information Processing System for Real-time Motion Monitoring. Z. Anorg. Allg. Chem. 2020, 646, 500–506. [Google Scholar] [CrossRef]
- Sengupta, A.; Das, S.; Dasgupta, S.; Sengupta, P.; Datta, P. Flexible Nanogenerator from Electrospun PVDF–Polycarbazole Nanofiber Membranes for Human Motion Energy-Harvesting Device Applications. ACS Biomater. Sci. Eng. 2021, 7, 1673–1685. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, H.L.; Cao, S.L.; Cui, X.J.; Yan, Z.C.; Sang, S.B. A self-powered stretchable sensor fabricated by serpentine PVDF film for multiple dynamic monitoring. Mater. Des. 2019, 182, 108025. [Google Scholar] [CrossRef]
- Lu, L.J.; Ding, W.Q.; Liu, J.Q.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Anaya, D.V.; He, T.; Lee, C.; Yuce, M.R. Self-powered Eye Motion Sensor based on Triboelectric Interaction and Near-field Electrostatic Induction for Wearable Assistive Technologies. Nano Energy 2020, 72, 104675. [Google Scholar] [CrossRef]
- Yu, C.; Yu, X.X.; Zheng, D.S.; Yin, H. Piezoelectric potential enhanced photocatalytic performance based on ZnO with different nanostructures. Nanotechnology 2021, 32, 135703. [Google Scholar] [CrossRef]
- Zhang, J. Phase transformation and its effect on the piezopotential in a bent zinc oxide nanowire. Nanotechnology 2020, 32, 075404. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, M.; Lee, Y.; Lee, H.S.; Ko, H. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, e1500661. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.H.; Singh, M.; Gangwal, K.; Faraz, M.; Khare, N. BaTiO3-PVDF Composite Film for Piezoelectric Nanogenerator. AIP Conf. Proc. 2020, 2265, 030642. [Google Scholar]
- Sahu, M.; Hajra, S.; Lee, K.; Deepti, P.L.; Mistewicz, K.; Kim, H.J. Piezoelectric Nanogenerator Based on Lead-Free Flexible PVDF-Barium Titanate Composite Films for Driving Low Power Electronics. Crystals 2021, 11, 85. [Google Scholar] [CrossRef]
- Yu, L.; Qu, F.; Xiang, W. Facile hydrothermal synthesis of novel ZnO nanocubes. J. Alloys Compd. 2010, 504, L1–L4. [Google Scholar] [CrossRef]
- Ying, L.; Qu, F.; Xiang, W. Assembling ZnO Nanorods into Microflowers through a Facile Solution Strategy: Morphology Control and Cathodoluminescence Properties. Nano-Micro Lett. 2012, 4, 45–51. [Google Scholar]
- Yu, L.; Qu, F.; Wu, X. Solution synthesis and optimization of ZnO nanowindmills. Appl. Surf. Sci. 2011, 257, 7432–7435. [Google Scholar] [CrossRef]
- Gong, L.; Xiang, W.; Cai, Y.; Qu, F.; An, M. Aqueous phase approach to ZnO microspindles at low temperature. J. Alloys Compd. 2010, 501, 375–379. [Google Scholar] [CrossRef]
- Hussein, A.D.; Sabry, R.S.; Dakhil, O.; Bagherzadeh, R. Effect of Adding BaTiO3 to PVDF as Nano Generator. J. Phys. Conf. Ser. 2019, 1294, 022012. [Google Scholar] [CrossRef]
- Indolia, A.P.; Gaur, M.S. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J. Therm. Anal. Calorim. 2013, 113, 821–830. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Z.; Xu, L.; Wang, A.C.; Han, K.; Jiang, T.; Lai, Q.; Bai, Y.; Tang, W.; Fan, F.R. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büttner, C.; Milani, T.L.; Sichting, F. Integrating a Potentiometer into a Knee Brace Shows High Potential for Continuous Knee Motion Monitoring. Sensors 2021, 21, 2150. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Jia, C.; Zhu, Y.; Zhao, T. An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills. Sensors 2021, 21, 5144. https://doi.org/10.3390/s21155144
Zhao C, Jia C, Zhu Y, Zhao T. An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills. Sensors. 2021; 21(15):5144. https://doi.org/10.3390/s21155144
Chicago/Turabian StyleZhao, Chongle, Changjun Jia, Yongsheng Zhu, and Tianming Zhao. 2021. "An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills" Sensors 21, no. 15: 5144. https://doi.org/10.3390/s21155144
APA StyleZhao, C., Jia, C., Zhu, Y., & Zhao, T. (2021). An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills. Sensors, 21(15), 5144. https://doi.org/10.3390/s21155144