Wearable Technologies in Field Hockey Competitions: A Scoping Review
Abstract
:1. Introduction
1.1. Global Positioning System (GPS)
1.2. Heart Rate Monitors
1.3. Wearable Technologies in Sport
1.4. Research Gap
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
3. Results
3.1. Partcipant and Competition Characteristics
3.2. Types of Wearables
3.2.1. Brands
3.2.2. Sampling Rates
3.3. Purpose of Wearables
3.4. Parameters Measured by Wearables
3.5. Performance Bands
4. Discussion
4.1. Sampling Rates
4.2. Applications of Wearables
4.3. Performance Activity Bands
4.4. Limitations
4.5. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harry, K.; Booysen, M.J. Faster Heart Rate Recovery Correlates with High-Intensity Match Activity in Female Field Hockey Players—Training Implications. J. Strength Cond. Res. 2020, 34, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, A.; Malone, S.; Petrakos, G.; Collins, K. Physical and Physiological Demands of Elite International Female Field Hockey Players During Competitive Match Play. J. Strength Cond. Res. 2019, 33, 3105–3113. [Google Scholar] [CrossRef] [PubMed]
- Morencos, E.; Romero-Moraleda, B.; Castagna, C.; Casamichana, D. Positional Comparisons in the Impact of Fatigue on Movement Patterns in Hockey. Int. J. Sports Physiol. Perform. 2018, 13, 1149–1157. [Google Scholar] [CrossRef]
- Harley, J.A.; Barnes, C.A.; Portas, M.; Lovell, R.; Barrett, S.; Paul, D.; Weston, M. Motion analysis of match-play in elite U12 to U16 age-group soccer players. J. Sports Sci. 2010, 28, 1391–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLellan, C.P.; I Lovell, D.; Gass, G.C. Performance Analysis of Elite Rugby League Match Play Using Global Positioning Systems. J. Strength Cond. Res. 2011, 25, 1703–1710. [Google Scholar] [CrossRef]
- Brewer, C.; Dawson, B.; Heasman, J.; Stewart, G.; Cormack, S. Movement pattern comparisons in elite (AFL) and sub-elite (WAFL) Australian football games using GPS. J. Sci. Med. Sport 2010, 13, 618–623. [Google Scholar] [CrossRef]
- Alexandre, D.; da Silva, C.D.; Hill-Haas, S.; Wong, D.P.; Natali, A.J.; De Lima, J.R.P.; Filho, M.G.B.; Marins, J.J.; Garcia, E.; Karim, C. Heart Rate Monitoring in Soccer. J. Strength Cond. Res. 2012, 26, 2890–2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vescovi, J.D.; Klas, A. Accounting for the warm-up: Describing the proportion of total session demands in women’s field hockey —Female Athletes in Motion (FAiM) study. Int. J. Perform. Anal. Sport 2018, 18, 868–880. [Google Scholar] [CrossRef]
- Dellaserra, C.L.; Gao, Y.; Ransdell, L. Use of Integrated Technology in Team Sports. J. Strength Cond. Res. 2014, 28, 556–573. [Google Scholar] [CrossRef]
- National Research Council. The Global Positioning System for the Geosciences: Summary and Proceedings of a Workshop on Improving the GPS Reference Station Infrastructure for Earth, Oceanic, and Atmospheric Science Applications; National Academy Press: Washington, DC, USA, 1997. [Google Scholar]
- Witte, T.; Wilson, A. Accuracy of non-differential GPS for the determination of speed over ground. J. Biomech. 2004, 37, 1891–1898. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. Int. J. Sports Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Harley, J.A.; Lovell, R.J.; Barnes, C.A.; Portas, M.D.; Weston, M. The Interchangeability of Global Positioning System and Semiautomated Video-Based Performance Data During Elite Soccer Match Play. J. Strength Cond. Res. 2011, 25, 2334–2336. [Google Scholar] [CrossRef] [PubMed]
- Vickery, W.M.; Dascombe, B.J.; Baker, J.D.; Higham, D.G.; Spratford, W.A.; Duffield, R. Accuracy and Reliability of GPS Devices for Measurement of Sports-Specific Movement Patterns Related to Cricket, Tennis, and Field-Based Team Sports. J. Strength Cond. Res. 2014, 28, 1697–1705. [Google Scholar] [CrossRef]
- Randers, M.B.; Mujika, I.; Hewitt, A.; Santisteban, J.; Bischoff, R.; Solano, R.; Zubillaga, A.; Peltola, E.; Krustrup, P.; Mohr, M. Application of four different football match analysis systems: A comparative study. J. Sports Sci. 2010, 28, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The Use of Wearable Microsensors to Quantify Sport-Specific Movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef]
- Lutz, J.; Memmert, D.; Raabe, D.; Dornberger, R.; Donath, L. Wearables for Integrative Performance and Tactic Analyses: Opportunities, Challenges, and Future Directions. Int. J. Environ. Res. Public Heal. 2019, 17, 59. [Google Scholar] [CrossRef] [Green Version]
- Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef]
- Gabbett, T.; Jenkins, D.; Abernethy, B. Physical collisions and injury during professional rugby league skills training. J. Sci. Med. Sport 2010, 13, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Quantifying the Physical Demands of Collision Sports. J. Strength Cond. Res. 2013, 27, 2319–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, J.F.; Stergiou, P.; Fung, T.S.; Katz, L. Comparison of Polar M600 Optical Heart Rate and ECG Heart Rate during Exercise. Med. Sci. Sports Exerc. 2017, 49, 2600–2607. [Google Scholar] [CrossRef]
- Cosoli, G.; Spinsante, S.; Scalise, L. Wrist-worn and chest-strap wearable devices: Systematic review on accuracy and metrological characteristics. Measurement 2020, 159, 107789. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart Rate Monitoring. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.T.U.; Scott, T.J.; Kelly, V.G. The Validity and Reliability of Global Positioning Systems in Team Sport. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef]
- Piggott, B.; Newton, M.; McGuigan, M. The relationship between training load and incidence of injury and illness over a pre-season at an Australian Football League Club. J. Aust. Strength Cond. 2009, 17, 4–17. [Google Scholar]
- Buchheit, M.; Modunotti, M.; Stafford, K.; Gregson, W.; Di Salvo, V. Match running performance in professional soccer players: Effect of match status and goal difference. Sport Perform Sci. Rep. 2018, 1, 1–3. [Google Scholar]
- Bradley, P.S.; Noakes, T.D. Match running performance fluctuations in elite soccer: Indicative of fatigue, pacing or situational influences? J. Sports Sci. 2013, 31, 1627–1638. [Google Scholar] [CrossRef]
- McLellan, C.P.; I Lovell, D.; Gass, G.C. Creatine Kinase and Endocrine Responses of Elite Players Pre, During, and Post Rugby League Match Play. J. Strength Cond. Res. 2010, 24, 2908–2919. [Google Scholar] [CrossRef] [Green Version]
- Benson, L.C.; Räisänen, A.M.; Volkova, V.G.; Pasanen, K.; Emery, C.A. Workload a-WEAR-ness: Monitoring Workload in Team Sports With Wearable Technology. A Scoping Review. J. Orthop. Sports Phys. Ther. 2020, 50, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Linke, D.; Lames, M. Substitutions in elite male field hockey—A case study. Int. J. Perform. Anal. Sport 2016, 16, 924–934. [Google Scholar] [CrossRef]
- Lythe, J.; Kilding, A.E. Physical Demands and Physiological Responses During Elite Field Hockey. Int. J. Sports Med. 2011, 32, 523–528. [Google Scholar] [CrossRef]
- Malan, M.; Dawson, B.; Goodman, C.; Peeling, P. Effect of heat exposure on thermoregulation and hockey-specific response time in field hockey goalkeepers. J. Sci. Med. Sport 2010, 13, 371–375. [Google Scholar] [CrossRef]
- Konarski, J. Characteristics of chosen parameters of external and internal loads in Eastern European high level field hockey players. J. Hum. Sport Exerc. 2010, 5, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Gabbett, T.J. GPS Analysis of Elite Women’s Field Hockey Training and Competition. J. Strength Cond. Res. 2010, 24, 1321–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Cha, J.-H.; Park, J.-C. Association between in-game performance parameters recorded via global positioning system and sports injuries to the lower extremities in elite female field hockey players. Clust. Comput. 2018, 21, 1069–1078. [Google Scholar] [CrossRef]
- Wergin, V.V.; Zimanyi, Z.; Beckmann, J. A field study investigating running distance and affect of field hockey players in collective team collapse situations. Int. J. Sport Exerc. Psychol. 2020, 1–14. [Google Scholar] [CrossRef]
- Morencos, E.; Casamichana, D.; Torres, L.; Romero-Moraleda, B.; Haro, X.; Rodas, G. Kinematic demands of international competition in women’s field hockey. Apunt. Educ. Física Deport. 2019, 137, 56–70. [Google Scholar] [CrossRef]
- Macutkiewicz, D.; Sunderland, C. The use of GPS to evaluate activity profiles of elite women hockey players during match-play. J. Sports Sci. 2011, 29, 967–973. [Google Scholar] [CrossRef]
- Vinson, D.; Gerrett, N.; James, D.V.B. Influences of playing position and quality of opposition on standardized relative distance covered in domestic women’s field hockey: Implications for coaches. J. Strength Cond. Res. 2018, 32, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, A.; Kenna, D.; Grainger, A.; Collins, K. Investigating the effect of individual rotations on the physical and physiological performance in elite female field hockey players. Appl. Sci. 2021, 11, 1022. [Google Scholar] [CrossRef]
- Jennings, D.H.; Cormack, S.J.; Coutts, A.J.; Aughey, R.J. International field hockey players perform more high-speed running than national-level counterparts. J. Strength Cond. Res. 2012, 26, 947–952. [Google Scholar] [CrossRef]
- Jennings, D.; Cormack, S.J.; Coutts, A.J.; Aughey, R.J. GPS Analysis of an International Field Hockey Tournament. Int. J. Sports Physiol. Perform. 2012, 7, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Polglaze, T.; Dawson, B.; Hiscock, D.J.; Peeling, P. A comparative analysis of accelerometer and time–motion data in elite men’s hockey training and competition. Int. J. Sports Physiol. Perform. 2015, 10, 446–451. [Google Scholar] [CrossRef]
- Polglaze, T.; Dawson, B.; Buttfield, A.; Peeling, P. Metabolic power and energy expenditure in an international men’s hockey tournament. J. Sports Sci. 2018, 36, 140–148. [Google Scholar] [CrossRef]
- Chesher, S.M.; Netto, K.J.; Appleby, B.B.; Jacques, A.; Wild, C.Y. Deceleration characteristics of elite Australian male field hockey players during an Olympic tournament. J. Sci. Med. Sport. 2019, 22, 611–615. [Google Scholar] [CrossRef]
- Warman, G.E.; Cole, M.H.; Johnston, R.D.; Chalkley, D.; Pepping, G.-J. Using microtechnology to quantify torso angle during match-play in field hockey. J. Strength Cond. Res. 2019, 33, 2648–2654. [Google Scholar] [CrossRef]
- Sunderland, C.D.; Edwards, P.L. Activity profile and between-match variation in elite male field hockey. J. Strength Cond. Res. 2017, 31, 758–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Merwe, F.H.; Haggie, M.B.P. GPS analysis of a team competing in a national under 18 field hockey tournament. J. Aust. Strength Cond. 2019, 27. [Google Scholar]
- Konarski, J.; Strzelczyk, R. Characteristics of differences in energy expenditure and heart rate during indoor and outdoor field hockey matches. Stud. Phys. Culture Tour. 2009, 16. [Google Scholar]
- McMahon, G.E.; Kennedy, R.A. Changes in Player Activity Profiles After the 2015 FIH Rule Changes in Elite Women’s Hockey. J. Strength Cond. Res. 2019, 33, 3114–3122. [Google Scholar] [CrossRef] [Green Version]
- Vescovi, J.D. Impact of Maximum Speed on Sprint Performance During High-Level Youth Female Field Hockey Matches: Female Athletes in Motion (FAiM) Study. Int. J. Sports Physiol. Perform. 2014, 9, 621–626. [Google Scholar] [CrossRef]
- Vescovi, J.D. Locomotor, heart-rate, and metabolic power characteristics of youth women’s field hockey: Female athletes in motion (FAiM) study. Res. Q. Exerc. Sport. 2016, 87, 68–77. [Google Scholar] [CrossRef]
- McGuinness, A.; Malone, S.; Hughes, B.; Collins, K.; Passmore, D. Physical Activity and Physiological Profiles of Elite International Female Field Hockey Players Across the Quarters of Competitive Match Play. J. Strength Cond. Res. 2019, 33, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Romero-Moraleda, B.; Morencos-Martínez, E.; Torres-Ronda, L.; Casamichana, D. Analysis of congested schedule on competition external load in field hockey. RICYDE. Rev. Int. ciencias del Deport. 2020, 16, 143–152. [Google Scholar] [CrossRef]
- Ihsan, M.; Tan, F.; Sahrom, S.; Choo, H.C.; Chia, M.; Aziz, A.R. Pre-game perceived wellness highly associates with match running performances during an international field hockey tournament. Eur. J. Sport Sci. 2017, 17, 593–602. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, A.; McMahon, G.; Malone, S.; Kenna, D.; Passmore, D.; Collins, K. Monitoring wellness, training load, and running performance during a major international female field hockey tournament. J. Strength Cond. Res. 2020, 34, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, A.S.; Held, N.J.; Warburton, D.E.R. Examination of internal training load parameters during the selection, preparation and competition phases of a mesocycle in elite field hockey players. Int. J. Perform. Anal. Sport. 2017, 17, 813–821. [Google Scholar] [CrossRef]
- Vescovi, J.D.; Frayne, D.H. Motion Characteristics of Division I College Field Hockey: Female Athletes in Motion (FAiM) Study. Int. J. Sports Physiol. Perform. 2015, 10, 476–481. [Google Scholar] [CrossRef]
- Ihsan, M.; Yeo, V.; Tan, F.; Joseph, R.; Lee, M.; Aziz, A.R. Running Demands and Activity Profile of the New Four-Quarter Match Format in Men’s Field Hockey. J. Strength Cond. Res. 2021, 35, 512–518. [Google Scholar] [CrossRef]
- Buglione, A.; Ruscello, B.; Milia, R.; Migliaccio, G.M.; Granatelli, G.; D’Ottavio, S. Physical and Physiological demands of elite and sub-elite Field Hockey players. Int. J. Perform. Anal. Sport 2013, 13, 872–884. [Google Scholar] [CrossRef]
- Perrotta, A.S.; Warburton, D.E.R. A comparison of sessional ratings of perceived exertion to cardiovascular indices of exercise intensity during competition in elite field hockey players. Biomed. Hum. Kinet. 2018, 10, 157–162. [Google Scholar] [CrossRef] [Green Version]
- White, A.D.; Macfarlane, N. Time-on-Pitch or Full-Game GPS Analysis Procedures for Elite Field Hockey? Int. J. Sports Physiol. Perform. 2013, 8, 549–555. [Google Scholar] [CrossRef]
- Casamichana, D.; Morencos, E.; Romero-Moraleda, B.; Gabbett, T.J. The Use of Generic and Individual Speed Thresholds for Assessing the Competitive Demands of Field Hockey. J. Sports Sci. Med. 2018, 17, 366–371. [Google Scholar] [PubMed]
- Polglaze, T.; Hogan, C.; Dawson, B.; Buttfield, A.; Osgnach, C.; Lester, L.; Peeling, P. Classification of Intensity in Team Sport Activity. Med. Sci. Sports Exerc. 2018, 50, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Jennings, D.; Cormack, S.; Coutts, A.J.; Boyd, L.; Aughey, R.J. The Validity and Reliability of GPS Units for Measuring Distance in Team Sport Specific Running Patterns. Int. J. Sports Physiol. Perform. 2010, 5, 328–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampinini, E.; Alberti, G.; Fiorenza, M.; Riggio, M.; Sassi, R.; Borges, T.O.; Coutts, A.J. Accuracy of GPS Devices for Measuring High-intensity Running in Field-based Team Sports. Int. J. Sports Med. 2014, 36, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Johnston, R.J.; Watsford, M.L.; Kelly, S.J.; Pine, M.J.; Spurrs, R.W. Validity and Interunit Reliability of 10 Hz and 15 Hz GPS Units for Assessing Athlete Movement Demands. J. Strength Cond. Res. 2014, 28, 1649–1655. [Google Scholar] [CrossRef]
Wearable | Brand | Model | Sampling Rate | Competitive Level/Category/ Game Format | Study (Year) (Female/Male) | Dist | Time | Spd | Acc | Dec | Load | Met. Pwr | HR | Others |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Active transponder | Inmotio | NA | 1000 | Elite/Open/2 | Linke & Lames (2016) (M) | x | x | |||||||
GPS | Catapult | MiniMaxX | 5 | Elite/Open/2 | Jennings et al. (2012a) (M) | x | x | |||||||
Elite/Open/NA | Gabbett (2010) (M) | x | x | x | ||||||||||
Elite/Open/2 | Jennings et al. (2012b) (F) | x | x | |||||||||||
Elite/Open/4 | Ihsan et al. (2017) (M) | x | x | x | x | |||||||||
Elite/Open/2 | White & MacFarlane (2013) (M) | x | x | x | x | |||||||||
10 | Elite/Open/2 | Polglaze et al. (2015) (M) | x | x | x | |||||||||
Elite/Open/4 | Polglaze et al. (2018a) (M) | x | x | x | x | |||||||||
Elite/Open/4 | Chesher et al. (2019) (M) | x | x | Deceleration bandsTime on pitchNo. of stints | ||||||||||
Elite/Open/2 | Polglaze et al. (2018b) (M) | x | x | x | No. of stints | |||||||||
Elite/Open/2 | Warman et al. (2019) (M) | x | Total playing timePlaying time spent in each torso angle | |||||||||||
MiniMax Team 2.5 | 5 | Elite/Open/4 | Ihsan et al. (2021) (M) | x | x | x | x | |||||||
OptimEye S5 | 10 | Elite/Open/2 | Warman et al. (2019) (M) | x | Total playing time Playing time spent in each torso angle | |||||||||
Elite/Open/4 | McGuinness et al. (2020) (F) | x | x | x | ||||||||||
Elite/Open/4 | McMahon & Kennedy (2019) (F) | x | x | x | No. of substitutions | |||||||||
GPSports | SPI Elite | 1 | Elite/Open/2 | Sunderland & Edwards (2017) (M) | x | x | No. of sprints | |||||||
Elite & Sub-elite/Open/2 | Buglione et al. (2013) (M) | x | x | x | x | |||||||||
Elite/Open/2 | Lythe & Kilding (2011) (M) | x | x | |||||||||||
10 | Sub-Elite/Open/4 | Romero-Moraleda et al. (2020) (M) | x | x | x | |||||||||
Elite/Open/4 | Morencos et al. (2019) (F) | x | x | |||||||||||
Sub-Elite/Open/4 | Morencos et al. (2018) (M) | x | x | x | ||||||||||
Sub-Elite/Open/4 | Casamichana et al. (2018) (M) | x | x | x | ||||||||||
NA | Elite/Open/2 | Macutkiewicz & Sunderland (2011) (F) | x | x | x | |||||||||
SPI HPU | 5 | Elite/Open/NA | Kim et al. (2018) (F) | x | x | |||||||||
SPI Pro | 5 | Elite/Youth/2 | Vescovi (2014) (F) | x | ||||||||||
Sub-Elite/Youth/2 | Vescovi & Frayne (2015) (F) | x | x | x | x | x | Work rate | |||||||
Elite/Youth/2 | Vescovi & Klas (2018) (F) | x | ||||||||||||
Elite/Youth/2 | Vescovi (2016) (F) | x | x | x | ||||||||||
SPI ProX | 15 | Sub-Elite/Open/NA | Wergin et al. (2020) (M) | x | ||||||||||
SPI HPU | 15 | Novice to Elite/Open 2 | Vinson et al. (2018) (F) | x | x | x | ||||||||
VXSports | NA | 4 | Elite/Open/2 | McGuinness et al. (2019b) (F) | x | |||||||||
VX 110 | 10 | Elite/Open/4 | McGuinness et al. (2019a) (F) | x | x | Workload | ||||||||
VX 350b | 10 | Sub-elite/Youth/4 | van der Merwe & Haggie (2019) (M) | x | x | |||||||||
STATSports | Apex | 10 | Elite/Open/4 | McGuinness et al. (2021) (F) | x | x | x | x | ||||||
HR Monitor | Polar | NA | NA | Elite & Sub-elite/Open/2 | Buglione et al. (2013) (M) | x | ||||||||
Team | NA | Elite/Open/2 | Lythe & Kilding (2011) (M) | x | ||||||||||
T31 | 5000 | Elite/Youth/2 | Vescovi et al. (2018) (F) | x | ||||||||||
Team 2 | NA | Elite/Open/2 | McGuinness et al. (2019b) (F) | x | ||||||||||
T31 | NA | Elite/Open/4 | McGuinness et al. (2021) (F) | x | ||||||||||
Team 2 | 1000 | Elite/Open/2 | Perrotta & Warburton (2018) (F) | x | x | |||||||||
Team 2 | 1000 | Elite/Open/2 | Perrotta et al. (2017) (F) | x | x | |||||||||
Vantage | NA | Elite/Open/NA | Konarski (2010) (NA) | x | EEE | |||||||||
Team | NA | NA/Open/2 | Konarski & Strzelczyk (2009) (M) | x | ||||||||||
NA | NA | Elite/Open/2 | Malan et al. (2010) (F&M) | x | ||||||||||
Team 2 | NA | Elite/Open/2 | Polglaze et al. (2018b) (M) | x | ||||||||||
Firstbeat Technologies Oy | NA | NA | Elite/Open/4 | McGuinness et al. (2019a) (F) | x | |||||||||
Zephyr | BioHarness 3 | 250 | Sub-elite/Open/2 | Harry & Booysen (2020) (F) | x | |||||||||
CorTemp Logger | Not Mentioned | NA | NA | Elite/Open/2 | Malan et al. (2010) (F&M) | Core and skin temperature | ||||||||
Accelerometer | Zephyr | BioHarness 3 | 250 | Sub-elite/Open/2 | Harry & Booysen (2020) (F) | x |
Study | Locomotor Bands | Velocity Bands | Estimated Energy | Acceleration/Deceleration Efforts |
---|---|---|---|---|
Linke & Lames (2016) | N/A | N/A | N/A | N/A |
Jennings et al. (2012a) | N/A | LSA: 0.10–4.17 m·s−1 HSR: >4.17 m·s−1 | N/A | N/A |
Gabbett (2010) | N/A | Low: 0–1 m·s−1 Moderate: 1–5 m·s−1 High: >5 m·s−1 | N/A | N/A |
Jennings et al. (2012b) | N/A | LSA: 0.10–4.17 m·s−1 HSR: >4.17 m·s−1 | N/A | N/A |
Ihsan et al. (2017) | N/A | N/A | N/A | N/A |
White & MacFarlane (2013) | DNM: 0–6 km·h−1 Jogging: 6–11 km·h−1 LSR: 11–15 km·h−1 MSR: 15–19 km·h−1 DNM: 19–23 km·h−1 Sprinting: >23 km·h−1 | N/A | N/A | High acceleration: >2.0 m·s−2 |
Ihsan et al. (2021) | N/A | N/A | N/A | N/A |
Polglaze et al. (2015) | N/A | N/A | N/A | N/A |
Polglaze et al. (2018a) | N/A | Low speed: <15.5 km·h−1 High speed: >15.5 km·h−1 | High power: >20.0 W·kg−1 Low power: <20.0 W·kg−1 | High acceleration: >2.0 m·s−2 Low acceleration: <2.0 m·s−2 |
Chesher et al. (2019) | N/A | N/A | N/A | Band 1 (Low): −3 to −5.99 m·s−2 Band 2 (Medium): −6 to −8.99 m·s−2 Band 3 (High): −9 to −11.99 m·s−2 Band 4 (Very high): <−12 m·s−2 |
Polglaze et al. (2018b) | N/A | N/A | N/A | N/A |
Warman et al. (2019) | N/A | N/A | N/A | N/A |
McGuinness et al. (2020) | N/A | Zone 1: <7.9 km·h−1 Zone 2: 8–10.9 km·h−1 Zone 3: 11–15.9 km·h−1 Zone 4: >16 km·h−1 Zone 5: >20 km·h−1 | N/A | N/A |
McMahon & Kennedy (2019) | N/A | LSR: 0–3.05 m·s−1 HSR: 3.08–5.27 m·s−1 | N/A | N/A |
Sunderland & Edwards (2017) | N/A | N/A | N/A | N/A |
Buglione et al. (2013) | N/A | Zone 1:0.1–6 km·h−1 Zone 2: 6.1–11 km·h−1 Zone 3: 11.1–14 km·h−1 Zone 4: 14.1–19 km·h−1 Zone 5: 19.1–23 km·h−1 Zone 6: >23 km·h−1 | N/A | 1 < a < 2 m·s−2 2 < a < 3 m·s−2 >3 m·s−2 −1 < a < −2 m·s−2 −2 < a < −3 m·s−2 <−3 m·s−2 |
Lythe & Kilding (2011) | N/A | Zone 1: 0–6 km·h−1 Zone 2: 6.1–11 km·h−1 Zone 3: 11.1–14 km·h−1 Zone 4: 14.1–19 km·h−1 Zone 5: 19.1–23 km·h−1 Zone 6: >23 km·h−1 | N/A | N/A |
Kim et al. (2018) | N/A | Very low: <6 km·h−1 Low: 6–12 km·h−1 Moderate: 12.1–18 km·h−1 High: 18.1–24 km·h−1 Very high: >24 km·h−1 | N/A | N/A |
Vescovi (2014) | N/A | Slower players: ≤29.0 km·h−1 Faster players: ≥29.0 km·h−1 | N/A | N/A |
Vescovi & Frayne (2015) | N/A | Low: 0–8.0 km·h−1 Moderate: 8.1–16.0 km·h−1 High: 16.1–20.0 km·h−1 Maximal: 20.1–32.0 km·h−1 | Low: ≤10 W·kg−1 Intermediate: 10.1–20 W·kg−1 High: 20.1–35 W·kg−1 Elevated 35.1–55 W·kg−1 Maximal: >55 W·kg−1 | N/A |
Vescovi et al. (2018) | N/A | Low: 0–8.0 km·h−1 Moderate: 8.1–16.0 km·h−1 High: 16.1–20.0 km·h−1 Maximal: >20.0 km·h−1 | N/A | N/A |
Vescovi (2016) | N/A | Low: 0–8.0 km·h−1 Moderate: 8.1–16.0 km·h−1 High: 16.1–20.0 km·h−1 Maximal: >20.1–32.0 km·h−1 | Low: ≤10 W·kg−1 Intermediate: 10.1–20 W·kg−1 High: 20.1–35 W·kg−1 Elevated 35.1–55 W·kg−1 Maximal: >55 W·kg−1 | N/A |
Romero-Moraleda et al. (2020) | N/A | LSR: <15.0 km·h−1 MSR: 15.1–18.9 km·h−1 HSR: >19 km·h−1 SR: >23.0 km·h−1 | N/A | Low: 1–1.9 m·s−2 Moderate: 2–2.9 m·s−2 High: >3 m·s−2 |
Morencos et al. (2019) | N/A | N/A | N/A | Low: 1–1.9 m·s−2 Moderate: 2–2.9 m·s−2 High: >3 m·s−2 |
Morencos et al. (2018) | Standing-Walking: <9.0 km·h−1 Jogging: 9.1–15.0 km·h−1 MSR: 15.1–19 km·h−1 HSR: >19 km·h−1 Sprinting: >23 km·h−1 | N/A | N/A | Low: 1–1.9 m·s−2 Moderate: 2–2.9 m·s−2 High: >3 m·s−2 |
Casamichana et al. (2018) | N/A | MSR: 15.1–18.9 km·h−1 HSR: 19–23.9 km·h−1 VHSR: 24–29.9 km·h−1 SR: >30 km·h−1 | N/A | N/A |
Macutkiewicz & Sunderland (2011) | Standing: 0–0.6 km·h−1 Walking: 0.7–6.0 km·h−1 Jogging: 6.1–11.0 km·h−1 Running: 11.1–15.0 km·h−1 Fast running: 15.1–19.0 km·h−1 Sprinting: >19.0 km·h−1 | Low: 0–6 km·h−1 Moderate: 6.1–15.0 km·h−1 High: 15.1–29.5 km·h−1 | N/A | N/A |
McGuinness et al. (2019b) | N/A | Zone 1: 0–7.9 km·h−1 Zone 2: 8–15.9 km·h−1 Zone 3: 16–19.9 km·h−1 Zone 4: >20 km·h−1 | N/A | N/A |
Wergin et al. (2020) | N/A | N/A | N/A | N/A |
Vinson et al. (2018) | N/A | Zone 1: 0% MSS Zone 2: 0.1–20% MSS Zone 3: 20.1–35% MSS Zone 4: 35.1–50% MSS Zone 5: 50.1–70% MSS Zone 6: >70% MSS | N/A | N/A |
McGuinness et al. (2019a) | N/A | Zone 1: <7.9 km·h−1 Zone 2: 8–10.9 km·h−1 Zone 3: 11–15.9 km·h−1 Zone 4: 16–19.9 km·h−1 Zone 5: >20 km·h−1 | Low: >7.9 km·h−1 Moderate: 8–15.9 km·h−1 High: >16 km·h−1 | N/A |
van der Merwe & Haggie (2019) | N/A | Band 1: ≤5.9 km·h−1 Band 2: 6–10 km·h−1 Band 3: 10.1–14.9 km·h−1 Band 4: 15–24.6 km·h−1 Band 5: ≥24.7 km·h−1 | N/A | N/A |
McGuinness et al. (2021) | N/A | Zone 1: 0–7.9 km·h−1 Zone 2: 8–15.9 km·h−1 Zone 3: 16–19.9 km·h−1 Zone 4: >20 km·h−1 | N/A | N/A |
Harry & Booysen (2020) | Standing and walking: <0.8 VMU Jogging: 0.8–1.09 VMU Running: 1.1–1.39 VMU Sprinting: ≥ 1.4 VMU | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.Z.; Sim, A.; Kong, P.W. Wearable Technologies in Field Hockey Competitions: A Scoping Review. Sensors 2021, 21, 5242. https://doi.org/10.3390/s21155242
Lim JZ, Sim A, Kong PW. Wearable Technologies in Field Hockey Competitions: A Scoping Review. Sensors. 2021; 21(15):5242. https://doi.org/10.3390/s21155242
Chicago/Turabian StyleLim, Jolene Ziyuan, Alexiaa Sim, and Pui Wah Kong. 2021. "Wearable Technologies in Field Hockey Competitions: A Scoping Review" Sensors 21, no. 15: 5242. https://doi.org/10.3390/s21155242
APA StyleLim, J. Z., Sim, A., & Kong, P. W. (2021). Wearable Technologies in Field Hockey Competitions: A Scoping Review. Sensors, 21(15), 5242. https://doi.org/10.3390/s21155242