Discovering Vegetation Recovery and Landslide Activities in the Wenchuan Earthquake Area with Landsat Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data
2.2.1. Landsat Images
2.2.2. Other Data
2.3. Methods
2.3.1. NDVI Images Generating and Fusion
2.3.2. Evaluating Vegetation Damage
2.3.3. Evaluating Vegetation Recovery
2.3.4. The Influence of Landform
3. Results
3.1. Vegetation Damage Evaluation
3.2. Vegetation Recovery Rate
3.3. Landslide Activity Estimation
3.4. Influences of Landform Factors
3.5. Influences of Epicenter, Fault Ruptures, and Rivers
4. Discussions
4.1. Characteristics of This Study
4.2. Uncertainty Analysis
4.3. Decay of Landslide Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
DEM | Digital Elevation Model |
ETM+ | (Landsat) Enhanced Thematic Mapper |
EVI | Enhanced Vegetation Index |
GDEM | Global Digital Elevation Model |
HJ-1 T | (Chinese) Huanjing-1 Satellite |
MODIS | Moderate-Resolution Imaging Spectroradiometer |
MVC | Maximum-Value Composite |
NDVI | Normalized Difference Vegetation Index |
NIR | Near-Infrared |
OLI | (Landsat 8) Operational Land Imager |
SLC | (Landsat 7) Scan Line Corrector |
SPOT | (French) Systeme Probatoire d’Observation de la Terre |
TIRS | (Landsat 8) Thermal Infrared Sensor |
TM | (Landsat) Thematic Mapper |
VDA | Vegetation Damage |
VRR | Vegetation Recovery Rate |
References
- Chang, M.; Tang, C.; Van Asch, T.W.; Cai, F. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area South West China. Landslides 2017, 14, 1783–1792. [Google Scholar] [CrossRef]
- Lin, G.W.; Chen, H.; Chen, Y.H.; Horng, M.J. Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Eng. Geol. 2008, 97, 32–41. [Google Scholar] [CrossRef]
- Shou, K.J.; Hong, C.Y.; Wu, C.C.; Hsu, H.Y.; Fei, L.Y.; Lee, J.F.; Wei, C.Y. Spatial and temporal analysis of landslides in Central Taiwan after 1999 Chi–Chi earthquake. Eng. Geol. 2011, 123, 122–128. [Google Scholar] [CrossRef]
- Chen, C.; Hawkins, A.B. Relationship between earthquake disturbance tropical rainstorms and debris movement: An overview from Taiwan. Bull. Eng. Geol. Environ. 2009, 68, 161–186. [Google Scholar] [CrossRef]
- Yin, Y.; Cheng, Y.; Wang, J.; Meng, L.; Song, Y.; Liang, J. Remote sensing research on Daguangbao gigantic rock-Slide triggered by Wenchuan earthquake. J. Eng. Geol. 2011, 19, 674–684. [Google Scholar]
- Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.; Xu, Q.; Tang, C.; Wang, G. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Cui, P.; Lin, Y.; Chen, C. Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas. Ecol. Eng. 2012, 44, 61–69. [Google Scholar] [CrossRef]
- Huang, R.; Li, W. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan earthquake China. Bull. Eng. Geol. Environ. 2009, 68, 363–371. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Li, W.L.; Liang, J.T. Rainfall-triggered debris flows following theWenchuan earthquake. Bull. Eng. Geol. Environ. 2009, 68, 187–194. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Lacasse, S.; Nadim, F. Evolution of mass movements near epicentre of wenchuan earthquake the first eight years. Sci. Rep. 2016, 6, 36154. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Scaringi, G.; Domènech, G.; Yang, F.; Guo, X.; Dai, L.; He, C.; Xu, Q.; Huang, R. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth Syst. Sci. Data 2019, 11, 35–55. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Cui, P.; Li, Y.; Ma, L.; Ge, Y.; Mahoney, W.B. Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan Earthquake affected area China. Geomorphology 2016, 253, 208–216. [Google Scholar] [CrossRef]
- Tang, C.; Van Westen, C.J.; Tanyas, H.; Jetten, V.G. Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake. Nat. Hazards Earth Syst. Sci. 2016, 16, 2641–2655. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, M.; Liu, K. A decadal evolution of landslides and debris flows after the Wenchuan earthquake. Geomorphology 2018, 323, 1–12. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Shi, P.; Xu, C.; Liu, L. Diagnosis of vegetation recovery in mountainous regions after the Wenchuan earthquake. IEEE J. Sel. Top. Appl. Earth Observ. 2014, 7, 3029–3037. [Google Scholar] [CrossRef]
- Jiang, W.G.; Jia, K.; Wu, J.J.; Tang, Z.H.; Wang, W.J.; Liu, X.F. Evaluating the vegetation recovery in the damage area of wenchuan earthquake using MODIS data. Remote Sens. 2015, 7, 8757–8778. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Godard, V.; Liu-Zeng, J.; Scherler, D.; Xu, C.; Zhang, J.; Xie, K.; Bellier, O.; Ansberque, C.; de Sigoyer, J. Perturbation of fluvial sediment fluxes following the 2008 wenchuan earthquake: Fluvial sediment fluxes following large-magnitude earthquake. Earth Surf. Process. Landf. 2017, 42, 2611–2622. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, L.M.; Chen, H.X.; Gao, L. Role of vegetation restoration in mitigating hillslope erosion and debris flows. Eng. Geol. 2017, 216, 122–133. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Zhang, Y.; Iqbal, J.; Chen, J.; Zhou, N. Surface recovery of landslides triggered by 2008 Ms8.0 Wenchuan earthquake (China): A case study in a typical mountainous watershed. Landslides 2016, 13, 787–794. [Google Scholar] [CrossRef]
- Muceku, Y.; Korini, O.; Kuriqi, A. Geotechnical analysis of hill’s slopes areas in heritage town of Berati, Albania. Period Polytech. Civ. 2016, 60, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiao, Q.; Liu, L.; Tang, H.; Liu, T. Monitoring geologic hazards and vegetation recovery in the Wenchuan earthquake region using aerial photography. ISPRS Int. J. Geo. Inf. 2014, 3, 368–390. [Google Scholar] [CrossRef] [Green Version]
- Gomes, P.I.; Aththanayake, U.; Deng, W.; Li, A.; Zhao, W.; Jayathilaka, T. Ecological fragmentation two years after a major landslide: Correlations between vegetation indices and geo-environmental factors. Ecol. Eng. 2020, 153, 105914. [Google Scholar] [CrossRef]
- Emadi-Tafti, M.; Ataie-Ashtiani, B.; Hosseini, S.M. Integrated impacts of vegetation and soil type on slope stability: A case study of Kheyrud Forest, Iran. Ecol. Model. 2021, 446, 109498. [Google Scholar] [CrossRef]
- Yang, W.; Wang, M.; Shi, P. Using MODIS NDVI time series to identify geographic patterns of landslides in vegetated regions. IEEE Geosci. Remote Sens. Lett. 2013, 10, 707–710. [Google Scholar] [CrossRef]
- Yang, W.; Qi, W.; Wang, M.; Zhang, J.; Zhang, Y. Spatial and temporal analyses of post-seismic landslide changes near the epicentre of the Wenchuan earthquake. Geomorphology 2017, 276, 8–15. [Google Scholar] [CrossRef]
- Yang, W.; Qi, W.; Zhou, J. Effects of Precipitation and Topography on Vegetation Recovery at Landslide Sites after the 2008 Wenchuan Earthquake. Land Degrad. Dev. 2018, 29, 3355–3365. [Google Scholar] [CrossRef]
- Yunus, A.P.; Fan, X.; Tang, X.; Dou, J.; Xu, Q.; Huang, R. Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sens. Environ. 2020, 236, 111476. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, X.J.; Lan, Q.G.; Freymueller, J.; Yang, S.M.; Xu, C.J.; Yang, Y.L.; You, X.Z.; Tan, K.; Chen, G. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nat Geosci. 2011, 4, 634–640. [Google Scholar]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (nearly) complete inventories of landslidestriggered by the May 12 2008 Wenchuan Mw 7.9earthquake of China and their spatial distribution statistical analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Domènech, G.; Scaringi, G.; Huang, R.; Xu, Q.; Hales, T.C.; Dai, L.; Yang, Q.; Francis, O. Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9Wenchuan Earthquake revealed by a detailed multi-temporal inventory. Landslides 2018, 15, 2325–2341. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Dearborn, K.D.; Danby, R.K. Aspect and slope influence plant community composition more than elevation across forest–tundra ecotones in subarctic Canada. J. Veg. Sci. 2017, 28, 595–604. [Google Scholar] [CrossRef]
- Hu, S.; Ma, J.; Shugart, H.H.; Yan, X. Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model. Environ. Res. Lett. 2018, 13, 34027. [Google Scholar] [CrossRef]
- Rumpf, S.B.; Hülber, K.; Klonner, G.; Moser, D.; Schütz, M.; Wessely, J.; Willner, W.; Zimmermann, N.E.; Dullinger, S. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. USA 2018, 115, 1848–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud cloud shadow and snow detection for Landsats 4-7, 8 and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Huang, R.; Li, W. Post-earthquake landsliding and long-term impacts in the Wenchuan earthquake area China. Eng. Geol. 2014, 182, 111–120. [Google Scholar] [CrossRef]
- Parker, R.N.; Densmore, A.L.; Rosser, N.J.; De Michele, M.; Li, Y.; Huang, R.; Whadcoat, S.; Petley, D.N. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat. Geosci. 2011, 4, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Stokes, A.; Atger, C.; Bengough, A.G.; Fourcaud, T.; Sidle, R.C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Saba, S.B.; van der Meijde, M.; van der Werff, H. Spatiotemporal landslide detection for the 2005 Kashmir earthquake region. Geomorphology 2010, 124, 17–25. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Qi, X.; Ding, J. Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China. Eng. Geol. 2011, 122, 22–33. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.M. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area. Geomorphology 2017, 276, 86–103. [Google Scholar] [CrossRef]
- Domènech, G.; Fan, X.; Scaringi, G.; van Asch, T.W.J.; Xu, Q.; Huang, R.; Hales, T.C. Modelling the role of material depletion grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake. Eng. Geol. 2019, 250, 34–44. [Google Scholar] [CrossRef]
VRR Value (%) | VRR Type | Landslide Activity |
---|---|---|
<0 | I | Active |
0–25 | II | |
25–50 | III | |
50–75 | IV | Weak active |
75–100 | V | |
>100 | VI | Inactive |
Class | Elevation (m) | Slope (ᵒ) | Aspect |
---|---|---|---|
1 | 500–1000 | 0–8 | North |
2 | 1000–1500 | 8–16 | North East |
3 | 1500–2000 | 16–24 | East |
4 | 2000–2500 | 24–32 | South East |
5 | 2500–3000 | 32–40 | South |
6 | 3000–3500 | 40–48 | South West |
7 | 3500–4000 | 48–56 | West |
8 | >4000 | >56 | North West |
Year | Type I | Type II | Type III | Type IV | Type V | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | Area | % | |
2009 | 52.15 | 7.7 | 421.56 | 62.4 | 183.50 | 27.2 | 18.18 | 2.7 | 0 | 0 |
2010 | 0 | 0 | 367.01 | 54.3 | 229.84 | 34.0 | 77.63 | 11.5 | 0.92 | 0.1 |
2011 | 0 | 0 | 153.87 | 22.8 | 404.21 | 59.8 | 117.32 | 17.4 | 0.09 | 0 |
2012 | 0 | 0 | 116.86 | 17.3 | 415.84 | 61.6 | 142.70 | 21.1 | 0 | 0 |
2013 | 0 | 0 | 97.01 | 14.4 | 346.70 | 51.3 | 231.69 | 34.3 | 0 | 0 |
2014 | 0 | 0 | 70.52 | 10.4 | 321.87 | 47.7 | 283.01 | 41.9 | 0 | 0 |
2015 | 0 | 0 | 7.47 | 1.1 | 254.95 | 37.7 | 323.16 | 47.8 | 89.72 | 13.3 |
2016 | 0 | 0 | 31.38 | 4.6 | 104.77 | 15.5 | 276.82 | 41.0 | 262.52 | 38.9 |
2017 | 0 | 0 | 0 | 0 | 141.32 | 20.9 | 303.22 | 44.9 | 240.18 | 35.6 |
2018 | 0 | 0 | 0 | 0 | 39.69 | 5.9 | 241.01 | 35.7 | 394.61 | 58.4 |
Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
Active (%) | 100 | 99.9 | 99.9 | 75.29 | 65.70 | 58.09 | 38.86 | 20.15 | 19.55 | 5.88 |
Weak active (%) | 0 | 0.01 | 0.01 | 24.71 | 34.30 | 41.91 | 61.14 | 79.85 | 80.45 | 94.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, C.; Li, C.; Gao, P.; Li, H. Discovering Vegetation Recovery and Landslide Activities in the Wenchuan Earthquake Area with Landsat Imagery. Sensors 2021, 21, 5243. https://doi.org/10.3390/s21155243
Zhong C, Li C, Gao P, Li H. Discovering Vegetation Recovery and Landslide Activities in the Wenchuan Earthquake Area with Landsat Imagery. Sensors. 2021; 21(15):5243. https://doi.org/10.3390/s21155243
Chicago/Turabian StyleZhong, Cheng, Chang Li, Peng Gao, and Hui Li. 2021. "Discovering Vegetation Recovery and Landslide Activities in the Wenchuan Earthquake Area with Landsat Imagery" Sensors 21, no. 15: 5243. https://doi.org/10.3390/s21155243
APA StyleZhong, C., Li, C., Gao, P., & Li, H. (2021). Discovering Vegetation Recovery and Landslide Activities in the Wenchuan Earthquake Area with Landsat Imagery. Sensors, 21(15), 5243. https://doi.org/10.3390/s21155243