Neovascularization Detection and Localization in Fundus Images Using Deep Learning
Abstract
:1. Introduction
2. Related Works
2.1. Traditional Methods
2.2. Deep Learning Methods
3. Methodology
3.1. Image Pre-Processing and Data Preparation
3.2. Network Design and Training
3.3. Image Segmentation and Performance Evaluation
3.4. Performance Comparison
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogers, D.G. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. Clin. Pediatr. 1994, 33, 378. [Google Scholar] [CrossRef]
- Lascar, N.; Brown, J.; Pattison, H.; Barnett, A.H.; Bailey, C.J.; Bellary, S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018, 6, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A. Specific problems of the diabetic foot in developing countries. Diabetes Metab. Res. Rev. 2004, 20, S19–S22. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Goldstein, M.G.; Acton, K.J.; Birch, L.L.; Jakicic, J.M.; Sallis, J.F.; Smith-West, D.; Jeffery, R.W.; Surwit, R.S. Behavioral science research in diabetes: Lifestyle changes related to obesity, eating behavior, and physical activity. Diabetes Care 2001, 24, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foreyt, J.; Poston, W.C. The challenge of diet, exercise and lifestyle modification in the management of the obese diabetic patient. Int. J. Obes. 1999, 23, S5–S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Ramasamy, K.; Abraham, C.; Gupta, V.; Gupta, A. Diabetic retinopathy: An update. Indian J. Ophthalmol. 2008, 56, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.R.A.; Taylor, H.R.; Flaxman, S.R.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; White, R.A.; Wong, T.Y.; Resnikoff, S.; et al. Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990–2010: A meta-analysis. PLoS ONE 2016, 11, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Jeng, C.J.; Hsieh, Y.T.; Yang, C.M.; Yang, C.H.; Lin, C.L.; Wang, I.J. Diabetic retinopathy in patients with dyslipidemia: Development and progression. Ophthalmol. Retin. 2018, 2, 38–45. [Google Scholar] [CrossRef]
- Davidson, J.A.; Ciulla, T.A.; McGill, J.B.; Kles, K.A.; Anderson, P.W. How the diabetic eye loses vision. Endocrine 2007, 32, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.I. Proliferative diabetic retinopathy. Br. J. Ophthalmol. 1973, 57, 873–874. [Google Scholar] [CrossRef] [Green Version]
- Wise, G.N. Retinal neovascularization. Trans. Am. Ophthalmol. Soc. 1956, 54, 729–826. [Google Scholar] [PubMed]
- Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Liew, G.; Wang, J.J.; Mitchell, P.; Wong, T.Y. Retinal vascular imaging: A new tool in microvascular disease research. Circ. Cardiovasc. Imaging 2008, 1, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mookiah, M.R.K.; Acharya, U.R.; Chua, C.K.; Lim, C.M.; Ng, E.Y.K.K.; Laude, A. Computer-aided diagnosis of diabetic retinopathy: A review. Comput. Biol. Med. 2013, 43, 2136–2155. [Google Scholar] [CrossRef]
- Van Ginneken, B.; Schaefer-Prokop, C.M.; Prokop, M. Computer-aided diagnosis: How to move from the laboratory to the clinic. Radiology 2011, 261, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Bellemo, V.; Xie, Y.; Lee, X.Q.; Yip, M.Y.T.; Ting, D.S.W. Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: A review. Eye Vis. 2020, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Abramoff, M.D.; Niemeijer, M.; Russell, S.R. Automated detection of diabetic retinopathy: Barriers to translation into clinical practice. Expert Rev. Med. Devices 2010, 7, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Balogh, E.P.; Miller, B.T.; Ball, J.R. (Eds.) Improving Diagnosis in Health Care; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Bhaskaranand, M.; Ramachandra, C.; Bhat, S.; Cuadros, J.; Nittala, M.G.; Sadda, S.R.; Solanki, K. The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes. Diabetes Technol. Ther. 2019, 21, 635–643. [Google Scholar] [CrossRef] [Green Version]
- St John, A.; Price, C.P. Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar]
- Tong, Y.; Lu, W.; Yu, Y.; Shen, Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis. 2020, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Zhang, X.; Geng, L.; Zhang, F.; Wu, J.; Tong, J.; Ogunbona, P.O.; Shan, C. Automatic non-proliferative diabetic retinopathy screening system based on color fundus image. Biomed. Eng. Online 2017, 16, 122. [Google Scholar] [CrossRef] [Green Version]
- Yanase, J.; Triantaphyllou, E. A systematic survey of computer-aided diagnosis in medicine: Past and present developments. Expert Syst. Appl. 2019, 138, 112821. [Google Scholar] [CrossRef]
- Freeman, W.R.; Bartsch, D.U.; Mueller, A.J.; Banker, A.S.; Weinreb, R.N. Simultaneous indocyanine green and fluorescein angiography using a confocal scanning laser ophthalmoscope. Arch. Ophthalmol. 1998, 116, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, T.J.; Barry, C.J. Ophthalmic imaging today: An ophthalmic photographer’s viewpoint—A review. Clin. Exp. Ophthalmol. 2009, 37, 2–13. [Google Scholar] [CrossRef]
- Siu, S.C.; Ko, T.C.; Wong, K.W.; Chan, W.N. Effectiveness of non-mydriatic retinal photography and direct ophthalmoscopy in detecting diabetic retinopathy. Hong Kong Med. J. 1998, 4, 367–370. [Google Scholar]
- Abràmoff, M.D.; Niemeijer, M.; Suttorp-Schulten, M.S.A.; Viergever, M.A.; Russell, S.R.; Van Ginneken, B. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care 2008, 31, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Silka, J.; Wieczorek, M.; Alrashoud, M. Recurrent neural network model for IoT and networking malware threat detection. IEEE Trans. Ind. Inform. 2021, 17, 5583–5594. [Google Scholar] [CrossRef]
- Guo, L.; Woźniak, M. An image super-resolution reconstruction method with single frame character based on wavelet neural network in internet of things. Mob. Netw. Appl. 2021, 26, 390–403. [Google Scholar] [CrossRef]
- Cortes, E.; Sanchez, S. Deep learning transfer with alexnet for chest X-ray COVID-19 recognition. IEEE Lat. Am. Trans. 2021, 19, 944–951. [Google Scholar] [CrossRef]
- Al-Falluji, R.A.; Katheeth, Z.D.; Alathari, B. Automatic detection of covid-19 using chest x-ray images and modified resnet18-based convolution neural networks. Comput. Mater. Contin. 2021, 66, 1301–1313. [Google Scholar] [CrossRef]
- Masud, M.; Hossain, M.S.; Alhumyani, H.; Alshamrani, S.S.; Cheikhrouhou, O.; Ibrahim, S.; Muhammad, G.; Rashed, A.E.E.; Gupta, B.B. Pre-trained convolutional neural networks for breast cancer detection using ultrasound images. ACM Trans. Internet Technol. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Polap, D.; Woźniak, M. Bacteria shape classification by the use of region covariance and convolutional neural network. In Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest, Hungary, 14–19 July 2019; pp. 1–7. [Google Scholar]
- Hassan, S.S.A.; Bong, D.B.L.; Premsenthil, M. Detection of neovascularization in diabetic retinopathy. J. Digit. Imaging 2012, 25, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saranya, K.; Ramasubramanian, B.; Kaja Mohideen, S. A novel approach for the detection of new vessels in the retinal images for screening diabetic retinopathy. In Proceedings of the 2012 International Conference on Communication and Signal Processing, Chennai, India, 4–5 April 2012; pp. 57–61. [Google Scholar]
- Ramasubramanian, B.; Anitha, G. An efficient approach for the detection of new vessels in diabetic retinopathy images. Int. J. Eng. Innov. Technol. 2012, 2, 240–244. [Google Scholar]
- Agurto, C.; Barriga, S.; Murray, V.; Murillo, S.; Zamora, G.; Bauman, W.; Pattichis, M.; Soliz, P. Toward comprehensive detection of sight threatening retinal disease using a multiscale AM-FM methodology. Med. Imaging 2011 Comput. Diagn. 2011, 7963, 796316. [Google Scholar] [CrossRef]
- Agurto, C.; Yu, H.; Murray, V.; Pattichis, M.S.; Barriga, S.; Bauman, W.; Soliz, P. Detection of neovascularization in the optic disc using an AM-FM representation, granulometry, and vessel segmentation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4946–4949. [Google Scholar]
- Vatanparast, M.; Harati, A. A feasibility study on detection of neovascularization in retinal color images using texture. In Proceedings of the 2012 2nd International eConference on Computer and Knowledge Engineering, Mashhad, Iran, 18–19 October 2012; pp. 221–226. [Google Scholar]
- Goatman, K.A.; Fleming, A.D.; Philip, S.; Williams, G.J.; Olson, J.A.; Sharp, P.F. Detection of new vessels on the optic disc using retinal photographs. IEEE Trans. Med. Imaging 2011, 30, 972–979. [Google Scholar] [CrossRef]
- Frame, A.J. Texture analysis of retinal neovascularisation. In Proceedings of the IEE Colloquium on Pattern Recognition 1997, London, UK, 26 February 1997; Volume 1997, p. 5. [Google Scholar]
- Jelinek, H.F.; Cree, M.J.; Leandro, J.J.G.; Soares, J.V.B.; Cesar, R.M.; Luckie, A. Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy. J. Opt. Soc. Am. A 2007, 24, 1448. [Google Scholar] [CrossRef]
- Nayak, J.; Bhat, P.S.; Acharya, R.U.; Lim, C.M.; Kagathi, M. Automated identification of diabetic retinopathy stages using digital fundus images. J. Med. Syst. 2008, 32, 107–115. [Google Scholar] [CrossRef]
- Roy, N.D.; Biswas, A. Deep learning-based early sign detection model for proliferative diabetic retinopathy in neovascularization at the disc. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; Volume 870, pp. 91–108. [Google Scholar]
- Setiawan, W.; Utoyo, M.I.; Rulaningtyas, R. Classification of neovascularization using convolutional neural network model. Telecommun. Comput. Electron. Control 2019, 17, 463. [Google Scholar] [CrossRef]
- Fexa, A. Sefexa—Image Segmentation Tool. Available online: http://www.fexovi.com/sefexa.html (accessed on 20 December 2020).
- You, X.; Peng, Q.; Yuan, Y.; Cheung, Y.; Lei, J. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 2011, 44, 2314–2324. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive Histogram Equalization and Its Variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Koo, K.-M.; Cha, E.-Y. Image recognition performance enhancements using image normalization. Hum. Cent. Comput. Inf. Sci. 2017, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 1, pp. 448–456. [Google Scholar]
- Jin, X.; Xu, C.; Feng, J.; Wei, Y.; Xiong, J.; Yan, S. Deep learning with s-shaped rectified linear activation units. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 1737–1743. [Google Scholar]
- Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8609–8613. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Amma Palanisamy, T.S.C.; Jayaraman, M.; Vellingiri, K.; Guo, Y. Optimization-based neutrosophic set for medical image processing. In Neutrosophic Set in Medical Image Analysis; Guo, Y., Ashour, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 189–206. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
Image Number | Accuracy | Sensitivity | Specificity | Precision | Jaccard | Dice |
---|---|---|---|---|---|---|
1 | 0.9926 | 0.7330 | 0.9966 | 0.7626 | 0.5968 | 0.7475 |
2 | 0.9928 | 0.5841 | 0.9995 | 0.9536 | 0.5680 | 0.7245 |
3 | 1.0000 | - | 1.0000 | - | - | - |
4 | 1.0000 | - | 1.0000 | - | - | - |
5 | 1.0000 | - | 1.0000 | - | - | - |
6 | 0.9930 | 0.4845 | 0.9999 | 0.9837 | 0.4806 | 0.6492 |
7 | 1.0000 | - | 1.0000 | - | - | - |
8 | 1.0000 | - | 1.0000 | - | - | - |
9 | 1.0000 | - | 1.0000 | - | - | - |
10 | 1.0000 | - | 1.0000 | - | - | - |
11 | 1.0000 | - | 1.0000 | - | - | - |
12 | 0.9960 | 0.9811 | 0.9961 | 0.7188 | 0.7090 | 0.8297 |
13 | 1.0000 | - | 1.0000 | - | - | - |
14 | 1.0000 | - | 1.0000 | - | - | - |
15 | 1.0000 | - | 1.0000 | - | - | - |
16 | 1.0000 | - | 1.0000 | - | - | - |
17 | 0.9828 | 0.6749 | 0.9992 | 0.9781 | 0.6649 | 0.7987 |
18 | 1.0000 | - | 1.0000 | - | - | - |
19 | 0.9879 | 0.7187 | 0.9996 | 0.9859 | 0.7114 | 0.8313 |
20 | 1.0000 | - | 1.0000 | - | - | - |
21 | 0.9841 | 0.9960 | 0.9828 | 0.8623 | 0.8593 | 0.9243 |
22 | 0.9964 | 0.9795 | 0.9972 | 0.9415 | 0.9233 | 0.9601 |
23 | 0.9961 | 0.9822 | 0.9964 | 0.8132 | 0.8014 | 0.8897 |
24 | 0.9920 | 0.8949 | 0.9982 | 0.9700 | 0.8708 | 0.9309 |
25 | 0.9968 | 0.9799 | 0.9973 | 0.9071 | 0.8905 | 0.9421 |
26 | 1.0000 | - | 1.0000 | - | - | - |
27 | 1.0000 | - | 1.0000 | - | - | - |
28 | 1.0000 | - | 1.0000 | - | - | - |
29 | 1.0000 | - | 1.0000 | - | - | - |
30 | 0.9995 | - | 0.9995 | 0.0000 | 0.0000 | 0.0000 |
31 | 1.0000 | - | 1.0000 | - | - | - |
32 | 0.9958 | 0.9618 | 0.9972 | 0.9356 | 0.9021 | 0.9485 |
33 | 1.0000 | - | 1.0000 | - | - | - |
34 | 0.9969 | 0.9957 | 0.9969 | 0.8915 | 0.8881 | 0.9407 |
35 | 1.0000 | - | 1.0000 | - | - | - |
36 | 1.0000 | - | 1.0000 | - | - | - |
37 | 0.9891 | 0.8630 | 0.9946 | 0.8747 | 0.7681 | 0.8688 |
38 | 0.9906 | 0.8363 | 0.9988 | 0.9744 | 0.8184 | 0.9001 |
39 | 0.9983 | 0.9501 | 0.9992 | 0.9606 | 0.9145 | 0.9553 |
40 | 0.9923 | 0.9972 | 0.9922 | 0.8004 | 0.7986 | 0.8880 |
41 | 0.9855 | 0.9869 | 0.9854 | 0.8585 | 0.8488 | 0.9182 |
42 | 0.9840 | 0.9360 | 0.9874 | 0.8422 | 0.7963 | 0.8866 |
43 | 0.9945 | 0.9844 | 0.9952 | 0.9311 | 0.9175 | 0.9570 |
44 | 0.9959 | 0.9409 | 0.9973 | 0.8925 | 0.8452 | 0.9161 |
45 | 0.9439 | 0.7209 | 0.9906 | 0.9417 | 0.6901 | 0.8166 |
46 | 1.0000 | - | 1.0000 | - | - | - |
47 | 0.9760 | 0.8655 | 0.9898 | 0.9137 | 0.8001 | 0.8889 |
48 | 0.9958 | 0.9187 | 0.9987 | 0.9643 | 0.8885 | 0.9410 |
49 | 0.9927 | 0.9633 | 0.9955 | 0.9523 | 0.9190 | 0.9578 |
50 | 1.0000 | - | 1.0000 | - | - | - |
Average (for image segmentation results) | 0.9948 | 0.8772 | 0.9976 | 0.8696 | 0.7643 | 0.8466 |
Average (for image patch classification results) | 0.9700 | 0.9462 | 0.9772 | 0.9263 | - | - |
Method | Accuracy | Sensitivity | Specificity | Precision |
---|---|---|---|---|
Setiawan et al. [46] (GoogLeNet with SVM) | 0.6650 | 0.9850 | 0.3450 | 0.6006 |
Setiawan et al. [46] (ResNet50 with SVM) | 0.9200 | 0.9950 | 0.8450 | 0.8652 |
Setiawan et al. [46] (AlexNet with SVM) | 0.8325 | 1.0000 | 0.6650 | 0.7491 |
Setiawan et al. [46] (ResNet18 with SVM) | 0.7525 | 1.0000 | 0.5050 | 0.6689 |
Hassan et al. [35] | 0.6502 | 0.7150 | 0.5766 | 0.6573 |
Proposed method | 0.9700 | 0.9462 | 0.9772 | 0.9263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.C.S.; Teoh, S.S.; Ibrahim, H.; Embong, Z. Neovascularization Detection and Localization in Fundus Images Using Deep Learning. Sensors 2021, 21, 5327. https://doi.org/10.3390/s21165327
Tang MCS, Teoh SS, Ibrahim H, Embong Z. Neovascularization Detection and Localization in Fundus Images Using Deep Learning. Sensors. 2021; 21(16):5327. https://doi.org/10.3390/s21165327
Chicago/Turabian StyleTang, Michael Chi Seng, Soo Siang Teoh, Haidi Ibrahim, and Zunaina Embong. 2021. "Neovascularization Detection and Localization in Fundus Images Using Deep Learning" Sensors 21, no. 16: 5327. https://doi.org/10.3390/s21165327
APA StyleTang, M. C. S., Teoh, S. S., Ibrahim, H., & Embong, Z. (2021). Neovascularization Detection and Localization in Fundus Images Using Deep Learning. Sensors, 21(16), 5327. https://doi.org/10.3390/s21165327