Fabrication of Weak C-Axis Preferred AlN Thin Film for Temperature Measurement
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tillmann, W.; Kokalj, D.; Stangier, D.; Schoppner, V.; Malatyali, H. Effects of AlN and BCN Thin Film Multilayer Design on the Reaction Time of Ni/Ni-20Cr Thin Film Thermocouples on Thermally Sprayed Al2O3. Sensors 2019, 19, 3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, P.; Wang, W.; Liu, D.; Zhang, J.; Ren, W.; Tian, B.; Zhang, J. Structural and Electrical Properties of Flexible ITO/In2O3 Thermocouples on PI Substrates under Tensile Stretching. ACS Appl. Electron. Mater. 2019, 1, 1105–1111. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, X.; Jiang, S.; Zhang, W.; Jiang, H. Microstructure Evolution and Thermoelectric Property of Pt-PtRh Thin Film Thermocouples. Crystals 2017, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhi-min, L. The Research of Temperature Indicating Paints and its Application in Aero-engine Temperature Measurement. Procedia Eng. 2015, 99, 1152–1157. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.; Lecuna, R.; Manana, M.; Martin, M.J.; Campo, D.D. Infrared Temperature Measurement Sensors of Overhead Power Conductors. Sensors 2020, 20, 7126. [Google Scholar] [CrossRef]
- Piccinini, F.; Martinelli, G.; Carbonaro, A. Reliability of Body Temperature Measurements Obtained with Contactless Infrared Point Thermometers Commonly Used during the COVID-19 Pandemic. Sensors 2021, 21, 3794. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, E.; Kanjilal, D.; Sivaji, K.; Ganapathy, S. Identification of sublattice damages in swift heavy ion irradiated N-doped 6H-SiC polytype studied by solid state NMR. J. Phys. Chem. B 2011, 115, 7766–7772. [Google Scholar] [CrossRef]
- Jin, E. Grain boundary effects on defect production and mechanical properties of irradiated nanocrystalline SiC. J. Appl. Phys. 2012, 111, 2303. [Google Scholar] [CrossRef]
- Ruan, Y.F.; Wang, P.F.; Huang, L.; Zhu, W. High-Temperature Sensor Based on Neutron-Irradiated 6H-SiC. Key Eng. Mater. 2011, 495, 335–338. [Google Scholar] [CrossRef]
- Kai, C.; Zang, H.; Ben, J.; Jiang, K.; Shi, Z.; Jia, Y.; Cao, X.; Lü, W.; Sun, X.; Li, D. Origination and evolution of point defects in AlN film annealed at high temperature. J. Lumin. 2021, 235, 118032. [Google Scholar] [CrossRef]
- Xiao, S.; Suzuki, R.; Miyake, H.; Harada, S.; Ujihara, T. Improvement mechanism of sputtered AlN films by high-temperature annealing. J. Cryst. Growth 2018, 502, 41–44. [Google Scholar] [CrossRef]
- Hagedorn, S.; Walde, S.; Mogilatenko, A.; Weyers, M.; Cancellara, L.; Albrecht, M.; Jaeger, D. Stabilization of sputtered AlN/sapphire templates during high temperature annealing. J. Cryst. Growth 2019, 512, 142–146. [Google Scholar] [CrossRef]
- Supruangnet, R.; Sailuam, W.; Busayaporn, W.; Wattanawikkam, C.; Jiamprasertboon, A.; Ruangvittayanon, A.; Sangsai, W.; Pirasampansiri, A.; Limpijumnong, S.; Yimnirun, R.; et al. Effects of N2-content on formation behavior in AlN thin films studied by NEXAFS: Theory and experiment. J. Alloy. Compd. 2020, 844, 156128. [Google Scholar] [CrossRef]
- Ababneh, A.; Alsumady, M.; Seidel, H.; Manzaneque, T.; Hernando-García, J.; Sánchez-Rojas, J.L.; Bittner, A.; Schmid, U. c-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes. Appl. Surf. Sci. 2012, 259, 59–65. [Google Scholar] [CrossRef]
- Li, Z.; Medvedev, N.; Chapman, H.N.; Shih, Y. Radiation damage free ghost diffraction with atomic resolution. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 025503. [Google Scholar] [CrossRef]
- Kita, T.; Ishizu, Y.; Tsuji, K.; Harada, Y.; Chigi, Y.; Nishimoto, T.; Tanaka, H.; Kobayashi, M.; Ishihara, T.; Izumi, H. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN. J. Appl. Phys. 2015, 117, 163105. [Google Scholar] [CrossRef] [Green Version]
- Solonenko, D.; Schmidt, C.; Stoeckel, C.; Hiller, K.; Zahn, D.R.T. The Limits of the Post-Growth Optimization of AlN Thin Films Grown on Si(111) via Magnetron Sputtering. Phys. Status Solidi (B) 2019, 257, 5. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Shojiki, K.; Uesugi, K.; Hayashi, Y.; Miyake, H. Quantitative evaluation of strain relaxation in annealed sputter-deposited AlN film. J. Cryst. Growth 2019, 512, 16–19. [Google Scholar] [CrossRef]
- Chen, F.; Wang, X.; Li, X.; Zheng, S.; Zeng, X.; Xu, K. Effects of Eu ions dose and annealing temperature on the structural and optical properties of Eu-implanted AlN thin films. Superlattices Microstruct. 2019, 129, 47–53. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Luo, X.; Liang, Y.; Wuu, D.-S.; Tin, C.-C.; Lu, X.; He, K.; Wan, L.; Feng, Z.C. Surface, structural and optical properties of AlN thin films grown on different face sapphire substrates by metalorganic chemical vapor deposition. Appl. Surf. Sci. 2018, 458, 972–977. [Google Scholar] [CrossRef]
- Rosenberger, L.; Baird, R.; McCullen, E.; Auner, G.; Shreve, G. XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf. Interface Anal. 2008, 40, 1254–1261. [Google Scholar] [CrossRef]
- Yan, S. Interpretation Technology of Crystal temperature Measurement for Aero-engine Turbine Blades. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2019. [Google Scholar]
- Zhang, D.; Wang, M. Objective Bayesian inference for the intraclass correlation coefficient in linear models. Stat. Probab. Lett. 2018, 137, 292–296. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The coefficient of determination R(2) and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Xu, S. Predicted Residual Error Sum of Squares of Mixed Models: An Application for Genomic Prediction. G3 Genes Genomes Genet. 2017, 7, 895–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchner, E.; Dekker, N. Performance measures of color-difference equations: Correlation coefficient versus standardized residual sum of squares. J. Opt. Soc. Am. A 2011, 28, 1841–1848. [Google Scholar] [CrossRef]
Experimental T (°C) | Interpretation T (°C)—40 min | Relative Error | Interpretation T (°C)—80 min | Relative Error |
---|---|---|---|---|
400 °C | 422.86 | 5.71% | 371.93 | 7.00% |
500 °C | 468.71 | 6.25% | 478.92 | 4.21% |
600 °C | 560.41 | 6.59% | 570.62 | 4.89% |
700 °C | 621.54 | 11.2% | 662.32 | 5.38% |
800 °C | 774.38 | 3.20% | 799.87 | 0.01% |
900 °C | 911.93 | 1.32% | 876.29 | 2.63% |
1000 °C | 973.07 | 2.69% | \ | \ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Li, Y.; Lv, J.; Jiang, H.; Zhang, W. Fabrication of Weak C-Axis Preferred AlN Thin Film for Temperature Measurement. Sensors 2021, 21, 5345. https://doi.org/10.3390/s21165345
Dong L, Li Y, Lv J, Jiang H, Zhang W. Fabrication of Weak C-Axis Preferred AlN Thin Film for Temperature Measurement. Sensors. 2021; 21(16):5345. https://doi.org/10.3390/s21165345
Chicago/Turabian StyleDong, Ling, Yang Li, Jingwen Lv, Hongchuan Jiang, and Wanli Zhang. 2021. "Fabrication of Weak C-Axis Preferred AlN Thin Film for Temperature Measurement" Sensors 21, no. 16: 5345. https://doi.org/10.3390/s21165345
APA StyleDong, L., Li, Y., Lv, J., Jiang, H., & Zhang, W. (2021). Fabrication of Weak C-Axis Preferred AlN Thin Film for Temperature Measurement. Sensors, 21(16), 5345. https://doi.org/10.3390/s21165345