Modbus Access Control System Based on SSI over Hyperledger Fabric Blockchain
Abstract
:1. Introduction
2. Related Work
3. Background
3.1. Modbus Protocol
3.2. Self-Sovereign Identity (SSI)
3.3. Hyperledger Fabric Blockchain
4. Design and Implementation
4.1. Key Concepts for mbapSSI
4.1.1. Modbus End-Devices Analysis for mbapSSI
4.1.2. DID Approach for mbapSSI
4.1.3. DID Document Approach for mbapSSI
4.1.4. SSI without VC Approach for mbapSSI
4.2. Overview of mbapSSI
4.3. Chaincode Design
did: “did:hfb:1fb352353ff51248c5104b407f9c04c3666627cf5a167d693c9fc84b75964e2”,
payload: “eyJhbGdvcml0aG0iOiJQUzI1NiIsImFsZyI6IlBTMjU2In0.eyJmdW5jdGlvbiI6ImNyZWF0ZVNlbGZJZGVudG”
}
4.4. Implementation
5. Performance Evaluation
5.1. Testbed Description
5.2. Experiments Conducted
5.2.1. Performance of mbapSSI Phases at 1:1 Ratio
5.2.2. Performance of the First Three Phases of mbapSSI Based on n:1 Ratio
5.2.3. Performance of the Modbus Transaction Phase at n:1 Ratio
5.2.4. Measuring Transaction Throughput over the HFB Network
6. Discussion of Results
6.1. Performance of mbapSSI Phases at 1:1 Ratio
6.2. Performance of the Three-Phases of mbapSSI Based on n:1 Ratio
6.3. Performance of the Modbus Transaction Phase at n:1 Ratio
6.4. Measuring Transaction Throughput over the HFB Network
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. A Survey of IIoT Protocols: A Measure of Vulnerability Risk Analysis Based on CVSS. ACM Comput. Surv. 2020, 53, 1–53. [Google Scholar] [CrossRef]
- Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. A Role-Based Access Control Model in Modbus SCADA Systems. A Centralized Model Approach. Sensors 2019, 19, 4455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.W. Cryptographic scalability challenges in the smart grid (extended abstract). In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Slagell, A.; Bonilla, R.; Yurcik, W. A survey of PKI components and scalability issues. In Proceedings of the 2006 IEEE International Performance Computing and Communications Conference, Phoenix, AZ, USA, 10–12 April 2006; pp. 10–484. [Google Scholar]
- The Weakest Link in the Chain: Vulnerabilities in the ssl Certificate Authority System and What Should Be Done about Them. Available online: https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf (accessed on 22 July 2021).
- Liu, H.; Han, D.; Li, D. Fabric-iot: A Blockchain-Based Access Control System in IoT. IEEE Access 2020, 8, 18207–18218. [Google Scholar] [CrossRef]
- Figueroa Lorenzo, S.; Añorga, J.; Arrizabalaga, S. An Attribute-Based Access Control Model in RFID Systems Based on Blockchain Decentralized Applications for Healthcare Environments. Computers 2019, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Caballero, A. Chapter 24-Information Security Essentials for Information Technology Managers: Protecting Mission-Critical Systems. In Computer and Information Security Handbook, 3rd ed.; Vacca, J.R., Ed.; Morgan Kaufmann: Boston, MA, USA, 2017; pp. 393–419. ISBN 978-0-12-803843-7. [Google Scholar]
- Lesavre, L.; Varin, P.; Mell, P.; Davidson, M.; Shook, J. A taxonomic approach to understanding emerging blockchain identity management systems. arXiv 2019, arXiv:1908.00929v2. [Google Scholar]
- Martinson, P. Estonia—The Digital Republic Secured by Blockchain; PricewaterhouseCoopers: London, UK, 2019; pp. 1–12. [Google Scholar]
- Butun, I.; Österberg, P. A Review of Distributed Access Control for Blockchain Systems Towards Securing the Internet of Things. IEEE Access 2021, 9, 5428–5441. [Google Scholar] [CrossRef]
- Naik, N.; Jenkins, P. Governing Principles of Self-Sovereign Identity Applied to Blockchain Enabled Privacy Preserving Identity Management Systems. In Proceedings of the 2020 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 12 October–12 November 2020; pp. 1–6. [Google Scholar]
- Bartolomeu, P.C.; Vieira, E.; Hosseini, S.M.; Ferreira, J. Self-Sovereign Identity: Use-cases, Technologies, and Challenges for Industrial IoT. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1173–1180. [Google Scholar] [CrossRef]
- Fedrecheski, G.; Rabaey, J.M.; Costa, L.C.P.; Calcina Ccori, P.C.; Pereira, W.T.; Zuffo, M.K. Self-sovereign identity for IoT environments: A perspective. In Proceedings of the 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3 June 2020. [Google Scholar]
- Kulabukhova, N.; Ivashchenko, A.; Tipikin, I.; Minin, I. Self-Sovereign Identity for IoT Devices. In Computational Science and Its Applications—ICCSA 2019; Springer: Cham, Switzerland, 2019; pp. 472–484. [Google Scholar]
- Self-Sovereign Identy and IoT. 2020. Available online: https://sovrin.org/wp-content/uploads/SSI-and-IoT-whitepaper.pdf (accessed on 14 January 2021).
- Gebresilassie, S.K.; Rafferty, J.; Morrow, P.; Chen, L.; Abu-Tair, M.; Cui, Z. Distributed, Secure, Self-Sovereign Identity for IoT Devices. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6. [Google Scholar]
- Lin, Z.; Pearson, S. An Inside Look at Industrial Ethernet Communication Protocols Strategic Marketing Manager Texas Instruments Strategic Marketing Manager Texas Instruments; White Paper; Texas Instruments: Dallas, TX, USA, 2018. [Google Scholar]
- Huitsing, P.; Chandia, R.; Papa, M.; Shenoi, S. Attack taxonomies for the Modbus protocols. Int. J. Crit. Infrastruct. Prot. 2008, 1, 37–44. [Google Scholar] [CrossRef]
- Allen, C. Self-Sovereign Identity: Ideology & Architecture. 16 March 2020. Available online: https://ssimeetup.org/self-sovereign-identity-why-we-here-christopher-allen-webinar-51/ (accessed on 26 July 2021).
- Allen, C. Self-Sovereign Identity Principles. 2016. Available online: https://github.com/ChristopherA/self-sovereign-identity/blob/master/self-sovereign-identity-principles.md (accessed on 26 July 2021).
- Sporny, M.; Longley, D.; Chadwick, D. Verifiable Credentials Data Model 1.0. 19 November 2019. Available online: https://www.w3.org/TR/vc-data-model/ (accessed on 11 February 2021).
- Reed, D.; Sporny, M.; Longley, D.; Allen, C.; Grant, R.; Sabadello, M. Decentralized Identifiers (DIDs) v1.0. 11 February 2021. Available online: https://www.w3.org/TR/did-core/#method-schemes (accessed on 11 February 2021).
- Khovratovich, D.; Law, J. Sovrin: Digital Identities in the Blockchain Era; Github Commit by jasonalaw; Sovrin Foundation: Northampton, MA, USA, 2016. [Google Scholar]
- Preukschat, A.; Reed, D. Self-Sovereign Identity Decentralized Digital Identity and Verifiable Credentials, 1st ed.; Manning Publications Co.: Shelter Island, NY, USA, 2021; ISBN 9781617296598. [Google Scholar]
- Linux Foundation. Hyperledger-Fabricdocs Documentation, Release Master. 13 January 2021. Available online: https://hyperledger-fabric.readthedocs.io/_/downloads/en/release-2.2/pdf/ (accessed on 14 January 2021).
- Kinkelin, H.; von Seck, R.; Rudolf, C.; Carle, G. Hardening X.509 Certificate Issuance using Distributed Ledger Technology. In Proceedings of the NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–6. [Google Scholar]
- Madala, D.S.V.; Jhanwar, M.P.; Chattopadhyay, A. Certificate transparency using blockchain. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 71–80. [Google Scholar] [CrossRef]
- Ding, S.; Cao, J.; Li, C.; Fan, K.; Li, H. A Novel Attribute-Based Access Control Scheme Using Blockchain for IoT. IEEE Access 2019, 7, 38431–38441. [Google Scholar] [CrossRef]
- Figueroa, S.; Añorga, J.; Arrizabalaga, S.; Irigoyen, I.; Monterde, M. An Attribute-Based Access Control using Chaincode in RFID Systems. In Proceedings of the 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Canary Islands, Spain, 24–26 June 2019; pp. 1–5. [Google Scholar]
- Terzi, S.; Savvaidis, C.; Votis, K.; Tzovaras, D.; Stamelos, I. Securing Emission Data of Smart Vehicles with Blockchain and Self-Sovereign Identities. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; pp. 462–469. [Google Scholar]
- Panait, A.E.; Olimid, R.F.; Stefanescu, A. Analysis of uPort Open, an Identity Management Blockchain-Based Solution; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 12395, ISBN 9783030589851. [Google Scholar]
- Shcherbakov, A. Understanding the Hyperledger Indy Distributed Ledger. 2019. Available online: https://wiki.hyperledger.org/display/RU/Understanding+the+Hyperledger+Indy+Distributed+Ledger (accessed on 23 July 2021).
- Yalcinkaya, E.; Maffei, A.; Akillioglu, H.; Onori, M. Empowering ISA95 compliant traditional and smart manufacturing systems with the blockchain technology. Manuf. Rev. 2021, 8, 15. [Google Scholar] [CrossRef]
- Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. Methodological performance analysis applied to a novel IIoT access control system based on permissioned blockchain. Inf. Process. Manag. 2021, 58, 102558. [Google Scholar] [CrossRef]
- Fabro, M.; Gorski, E.; Spiers, N. Recommended Practice: Improving Industrial Control System Cybersecurity with Defense-in-Depth Strategies Industrial Control Systems Cyber Emergency Response Team; St. Elizabeths West Campus: Washington, DC, USA, 2016.
- Crocker, D.; Overell, P. Augmented BNF for Syntax Specifications: ABNF; No. 5234; RFC Editor: Vashon, WA, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Reed, D. Webinar: Decentralized Identifiers (DIDs) SSIMeetup Objectives. Available online: https://ssimeetup.org/decentralized-identifiers-did-fundamental-block-self-sovereign-identity-drummond-reed-webinar-2/ (accessed on 11 February 2021).
- Modbus/TCP Security; Modbus Organization: Hopkinton, MA, USA, 2018; Available online: https://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf (accessed on 2 March 2021).
- Boeyen, S.; Santesson, S.; Polk, T.; Housley, R.; Farrell, S.; Cooper, D.I. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. Available online: https://www.rfc-editor.org/info/rfc5280 (accessed on 2 March 2021).
- Modbus Organization. Modbus Application Protocol Specification; Modbus Organization: Hopkinton, MA, USA, 2012. [Google Scholar]
- Peyrott, S. Machine to Machine Communications. Available online: https://auth0.com/blog/using-m2m-authorization/ (accessed on 17 June 2021).
- Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3; RFC Editor: Vashon, WA, USA, 2018. [Google Scholar]
- Baliga, A. The Nuts and Bolts of Decentralized Identity. 23 February 2021. Available online: https://aratibaliga.substack.com/p/the-nuts-and-bolts-of-decentralized (accessed on 2 March 2021).
- Naik, N.; Jenkins, P. uPort Open-Source Identity Management System: An Assessment of Self-Sovereign Identity and User-Centric Data Platform Built on Blockchain. In Proceedings of the 2020 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 12 October–12 November 2020; pp. 1–7. [Google Scholar]
- Enyeart, D. Hyperledger Fabric-SDK-Py. 23 February 2021. Available online: https://fabric-sdk-py.readthedocs.io/en/latest/index.html (accessed on 14 May 2021).
- The Python Software Foundation. TLS/SSL Wrapper for Socket Objects. 2017. Available online: https://docs.python.org/3/library/ssl.html (accessed on 14 May 2021).
- RiptideIO. PyModbus-A Python Modbus Stack; GitHub: Santa Barbara, CA, USA, 2018; p. 2. [Google Scholar]
- Documentation Team. Amazon Elastic Compute Cloud User Guide for Windows Instances; Samurai Media Limited: Thames Ditton, UK, 2018; ISBN 978-9-88-840815-3I. [Google Scholar]
- Modbus, E. MGate MB3170/MB3270 Series. Available online: https://www.moxa.com/en/products/industrial-edge-connectivity/protocol-gateways/modbus-tcp-gateways/mgate-mb3170-mb3270-series#overview (accessed on 5 March 2021).
- Lincoln, N. Hyperledger Caliper. 2019. Available online: https://hyperledger.github.io/caliper/ (accessed on 5 March 2021).
- Thakkar, P.; Nathan, S.; Viswanathan, B. Performance benchmarking and optimizing hyperledger fabric blockchain platform. In Proceedings of the 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Milwaukee, WI, USA, 25–28 September 2018; pp. 264–276. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, O.; Kind, A. Does Industrial Asset Management Provide Good Use Cases for Verifiable Credentials and Distributed Ledgers? What Is an Industrial Automation Component? 2021. Available online: https://hgf2021.sched.com/event/j3fM/does-industrial-asset-management-provide-good-use-cases-for-verifiable-credentials-and-distributed-ledgers-oliver-pfaff-andreas-kind-siemens-ag (accessed on 17 June 2021).
Phase | User | Holder | Verifier | VDSR |
---|---|---|---|---|
Registration | X | X | ||
Provisioning | X | X | ||
Channel securing | X | X | X | |
Verification | X | X | ||
Modbus transaction | X |
Phase | Device |
---|---|
Registration | CH, SH |
Channel securing | CH, SH, CV, SV |
Verification | CH |
Modbus transaction | CH, SH |
Phase | Modbus Client Time Min | Modbus Client Time Max | HFB Invocations | HFB Queries |
---|---|---|---|---|
Registration | 12.1 ms | 19.7 ms | 1 | 0 |
Channel Securing | 26.2 ms | 33.8 ms | 0 | 1 |
Verification | 14.6 ms | 19.2 ms | 0 | 1 |
Total | 52.9 ms | 71.7 ms | 1 | 2 |
Phase | Modbus Server Time Min | Modbus Server Time Max | HFB Invocations | HFB Queries |
---|---|---|---|---|
Registration | 23.9 ms | 31.2 ms | 2 | 0 |
Channel Securing | 28.7 ms | 39.6 ms | 0 | 1 |
Total | 51.6 ms | 70.8 ms | 2 | 1 |
Phase | Client-Server TCP Min Time | Client-Server TCP Max Time | Client-Server TLS Min Time | Client-Server TLS Max Time |
---|---|---|---|---|
Modbus transaction | 0.49 ms | 0.54 ms | 1.12 ms | 1.37 ms |
Architecture | mbapSSI Concurrent Transactions | Saturation Point (tps) | Sent Rate (tps) |
---|---|---|---|
1:1 | 2 | 129.6 | 150 |
4:1 | 10 | 100 | 100 |
8:1 | 18 | 97 | 100 |
16:1 | 34 | 70 | 75 |
32:1 | 66 | 37.2 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Lorenzo, S.; Añorga Benito, J.; Arrizabalaga, S. Modbus Access Control System Based on SSI over Hyperledger Fabric Blockchain. Sensors 2021, 21, 5438. https://doi.org/10.3390/s21165438
Figueroa-Lorenzo S, Añorga Benito J, Arrizabalaga S. Modbus Access Control System Based on SSI over Hyperledger Fabric Blockchain. Sensors. 2021; 21(16):5438. https://doi.org/10.3390/s21165438
Chicago/Turabian StyleFigueroa-Lorenzo, Santiago, Javier Añorga Benito, and Saioa Arrizabalaga. 2021. "Modbus Access Control System Based on SSI over Hyperledger Fabric Blockchain" Sensors 21, no. 16: 5438. https://doi.org/10.3390/s21165438
APA StyleFigueroa-Lorenzo, S., Añorga Benito, J., & Arrizabalaga, S. (2021). Modbus Access Control System Based on SSI over Hyperledger Fabric Blockchain. Sensors, 21(16), 5438. https://doi.org/10.3390/s21165438