In-Line Mach–Zehnder Interferometers Based on a Capillary Hollow-Core Fiber Using Vernier Effect for a Highly Sensitive Temperature Sensor
Abstract
:1. Introduction
2. Working Principle
2.1. Numerical Simulation of a Single MZI and Its Temperature Sensitivity
2.2. Magnification of Vernier Effect
2.3. Numerical Simulation of Two Cascaded MZIs and Their Temperature Sensitivity
3. Fabrication and Experimental Results
3.1. Fabrication Process of the MZI
3.2. Experimental Results of a Single MZI as a Temperature Sensor
3.3. Experimental Results of Two Cascaded MZIs and the Vernier Effect
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Kong, L.; Dang, Y.; Xia, F.; Zhang, Y.; Zhao, Y.; Li, J. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer. Sens. Actuators B Chem. 2016, 225, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liao, C.; Tang, J.; Wang, Y.; Bai, Z.; Li, Z.; Guo, K.; Deng, M.; Cao, S.; Wang, Y. Hollow-core-fiber-based interferometer for high-temperature measurements. IEEE Photon. J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Zuo, G.; Li, W.; Yang, Z.; Li, S.; Qi, R.; Huang, Y.; Xia, L. Double Phase Matching in MZI With Antiresonant Effect for Optical Fiber Sensor Application. J. Light. Technol. 2020, 39, 660–666. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, Y.; Zhang, L.; Cui, Y.; Jiang, Y.; Jia, J.; Jiang, L. Antiresonant mechanism based self-temperature-calibrated fiber optic Fabry–Perot gas pressure sensors. Opt. Express 2019, 27, 22181–22189. [Google Scholar] [CrossRef]
- Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720. [Google Scholar] [CrossRef]
- Raji, Y.M.; Lin, H.S.; Ibrahim, S.A.; Mokhtar, M.R.; Yusoff, Z. Intensity-modulated abrupt tapered fiber Mach-Zehnder interferometer for the simultaneous sensing of temperature and curvature. Opt. Laser Technol. 2016, 86, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhao, Y.; Li, J. PCF taper-based Mach–Zehnder interferometer for refractive index sensing in a PDMS detection cell. Sens. Actuators B Chem. 2015, 213, 1–4. [Google Scholar] [CrossRef]
- Massaroni, C.; Caponero, M.A.; D’Amato, R.; Lo Presti, D.; Schena, E. Fiber Bragg grating measuring system for simultaneous monitoring of temperature and humidity in mechanical ventilation. Sensors 2017, 17, 749. [Google Scholar] [CrossRef]
- Sun, C.; Han, Z.; Zhang, S.; Duan, S.; Jin, X.; Chen, X.; Yao, C.; Geng, T.; Zhang, Z.; Qu, Z.; et al. A micro MMF layer embedded in LPFG for simultaneous measurement of curvature and temperature. Opt. Fiber Technol. 2019, 48, 134–137. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, L.; Li, X.G. In-fiber modal interferometer for simultaneous measurement of curvature and temperature based on hollow core fiber. Opt. Laser Technol. 2017, 92, 138–141. [Google Scholar] [CrossRef]
- Gong, H.; Xiong, M.; Qian, Z.; Zhao, C.L.; Dong, X. Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures. IEEE Photon. J. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Wang, Y.; Yang, D.; Liu, X.; Fu, H.; Jia, Z. Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip. Opt. Fiber Technol. 2018, 46, 77–82. [Google Scholar] [CrossRef]
- Bai, Y.; Miao, Y.; Zhang, H.; Yao, J. Simultaneous measurement of temperature and relative humidity based on a microfiber Sagnac loop and MoS 2. J. Light. Technol. 2020, 38, 840–845. [Google Scholar] [CrossRef]
- Komma, J.; Schwarz, C.; Hofmann, G.; Heinert, D.; Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lin, S.; Liang, J.; Zhang, Y.; Oigawa, H.; Ueda, T. Fiber-optic temperature sensor based on difference of thermal expansion coefficient between fused silica and metallic materials. IEEE Photon. J. 2011, 4, 155–162. [Google Scholar]
- Hernández-Romano, I.; Monzón-Hernández, D.; Moreno-Hernández, C.; Moreno-Hernandez, D.; Villatoro, J. Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer. IEEE Photon. Technol. Lett. 2015, 27, 2591–2594. [Google Scholar] [CrossRef]
- Hernández-Romano, I.; Cruz-Garcia, M.A.; Moreno-Hernández, C.; Monzón-Hernández, D.; López-Figueroa, E.O.; Paredes-Gallardo, O.E.; Villatoro, J. Optical fiber temperature sensor based on a microcavity with polymer overlay. Opt. Express 2016, 24, 5654–5661. [Google Scholar] [CrossRef]
- Velázquez-González, J.S.; Monzón-Hernández, D.; Moreno-Hernández, D.; Martínez-Piñón, F.; Hernández-Romano, I. Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens. Actuators B Chem. 2017, 242, 912–920. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Z.; Zhang, Y.; Chiang, K.S.; Dong, X. Simultaneous pressure and temperature measurement with polymer-coated fibre Bragg grating. Electron. Lett. 2000, 36, 564–566. [Google Scholar] [CrossRef]
- Liao, H.; Lu, P.; Fu, X.; Jiang, X.; Ni, W.; Liu, D.; Zhang, J. Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect. Opt. Express 2017, 25, 26898–26909. [Google Scholar] [CrossRef]
- Nan, T.; Liu, B.; Wu, Y.; Wang, J.; Mao, Y.; Zhao, L.; Wang, J. Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer. Opt. Express 2019, 27, 17239–17250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, L.; Liu, C.; Wang, H.; Sun, S.; Yang, D. Sensitivity-Enhanced Fiber Temperature Sensor Based on Vernier Effect and Dual In-Line Mach–Zehnder Interferometers. IEEE Sens. J. 2019, 19, 7983–7987. [Google Scholar] [CrossRef]
- Paixão, T.; Araújo, F.; Antunes, P. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry–Perot interferometer fabricated by a femtosecond laser. Opt. Lett. 2019, 44, 4833–4836. [Google Scholar] [CrossRef]
- Shao, L.Y.; Luo, Y.; Zhang, Z.; Zou, X.; Luo, B.; Pan, W.; Yan, L. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect. Opt. Commun. 2015, 336, 73–76. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zhao, Y.; Jiang, J.; He, X.; Yang, W.; Li, L. Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity. Opt. Express 2017, 25, 33290–33296. [Google Scholar] [CrossRef]
- Ying, Y.; Zhao, C.; Gong, H.; Shang, S.; Hou, L. Demodulation method of Fabry-Perot sensor by cascading a traditional Mach-Zehnder interferometer. Opt. Laser Technol. 2019, 118, 126–131. [Google Scholar] [CrossRef]
- Passian, A.; Imam, N. Nanosystems, edge computing, and the next generation computing systems. Sensors 2019, 19, 4048. [Google Scholar] [CrossRef] [Green Version]
- Malitson, I.H. Interspecimen comparison of the refractive index of fused silica. Josa 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, M.; Gao, F.; Zhu, B.; Zhao, Z.; Duan, L.; Fu, S.; Ouyang, J.; Wei, H.; Shum, P.P.; et al. Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement. IEEE Photon. J. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Gomes, A.D.; Becker, M.; Dellith, J.; Zibaii, M.I.; Latifi, H.; Rothhardt, M.; Frazão, O. Multimode Fabry–Perot interferometer probe based on Vernier effect for enhanced temperature sensing. Sensors 2015, 19, 453. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.D.; Ferreira, M.S.; Bierlich, J.; Kobelke, J.; Rothhardt, M.; Bartelt, H.; Frazão, O. Hollow microsphere combined with optical harmonic Vernier effect for strain and temperature discrimination. Opt. Laser Technol. 2020, 127, 106198. [Google Scholar] [CrossRef]
Length of the CHCF (mm) | FSR (nm) | Response (nm/°C) |
---|---|---|
0.5 | 10.829 | 0.03029 |
1.0 | 5.415 | 0.03035 |
1.5 | 3.610 | 0.03029 |
2.0 | 2.707 | 0.03031 |
2.5 | 2.166 | 0.03028 |
3.0 | 1.805 | 0.03028 |
Type | SMF | MMF | CHCF |
---|---|---|---|
Cladding diameter | 125 µm | 125 µm | 125 µm |
Core diameter | 9 µm | 105 µm | 65.5 µm |
Cladding index | 1.443 | 1.443 | 1.443 |
Core index | 1.452 | 1.462 | 1 |
Length | 50 cm | 1 mm | from 0.5 to 3 mm |
Splicing Parameter Name | Parameter Values |
---|---|
1st Arc start power 1 | 10 |
1st Arc end power 1 | 40 |
1st Arc duration (ms) | 1500 |
Cleaning offset/arc 1 | 10 |
Cleaning duration (ms) | 100 |
Pre Arc duration (ms) | 160 |
Gap (µm) | 22 |
Z push length (µm) | 15 |
Z pull start time (ms) | 500 |
Z pull length (µm) | 10 |
Alignment type | Cladding |
Axis offset (µm) | 0 |
Length (mm) | Fabrication Length Error (mm) 1 | Fabrication Error 2 (%) | FSR Envelope Based on Fabrication Error (nm) | Magnification Based on Fabrication Error (M) |
---|---|---|---|---|
0.5 | 0.0471 | 9.432 | 106.895 | 11.602 |
1.0 | 0.0354 | 3.545 | 157.263 | 29.209 |
1.5 | 0.0557 | 3.713 | 96.789 | 26.932 |
2.0 | 0.0625 | 3.125 | 85.115 | 33.000 |
2.5 | 0.0472 | 1.888 | 125.971 | 53.966 |
3.0 | 0.0470 | 1.569 | 107.654 | 64.735 |
Average: | 0.0500 | − | − | − |
Fiber Structure | Temperature Sensitivity | |||||
---|---|---|---|---|---|---|
Sensing Device | Reference Device | Sensing Device (nm/°C) | Vernier Configuration (nm/°C) | ΔT (°C) | Magnification Factor (M) | |
1 | SMF as an FPI (2015) [29] | SHCF as FPI | 0.008 | 1.019 | 250–300 | 127.375 |
2 | Sagnac interferometer (2015) [24] | Sagnac interferometer | −1.46 | −13.36 | 0–10 | 9.15 |
3 | Sagnac interferometer (2017) [25] | CHCF as FPI | −1.4 | −29.0 | 42–44 | 20.7 |
4 | MZI based on core offset (2017) [20] | MZI based core offset | 0.04536 | 0.39736 | 10–75 | 8.7 |
5 | Small-size FPI (using ion beam) (2019) [30] | FPI-air cavity | 0.0097 from reference | −0.654 | 30–120 | 67.42 |
6 | CHCF–FPI (2019) [26] | MZI using 3dB couplers | 0.0012 | −0.1072 | 30–80 | 89 |
7 | FPI by using a femtosecond laser (2019) [23] | FPI by using a femtosecond Laser | Not mentioned | 0.927 | 30–60 | 100 |
8 | Hollow microsphere as FPI (2020) [31] | MMF as FPI | 0.0072 | −0.650 | 20–100 | 90.27 |
9 | MZI based on CHCF [22] | MZI based on CHCF | 0.03015 | 0.5285 | 0–100 | 17.5 |
10 | Proposed sensor CHCF-MZI | CHCF-MZI | 0.0291 | 1.964 | 10–70 | 67.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrujo-García, S.; Hernández-Romano, I.; May-Arrioja, D.A.; Minkovich, V.P.; Torres-Cisneros, M. In-Line Mach–Zehnder Interferometers Based on a Capillary Hollow-Core Fiber Using Vernier Effect for a Highly Sensitive Temperature Sensor. Sensors 2021, 21, 5471. https://doi.org/10.3390/s21165471
Marrujo-García S, Hernández-Romano I, May-Arrioja DA, Minkovich VP, Torres-Cisneros M. In-Line Mach–Zehnder Interferometers Based on a Capillary Hollow-Core Fiber Using Vernier Effect for a Highly Sensitive Temperature Sensor. Sensors. 2021; 21(16):5471. https://doi.org/10.3390/s21165471
Chicago/Turabian StyleMarrujo-García, Sigifredo, Iván Hernández-Romano, Daniel A. May-Arrioja, Vladimir P. Minkovich, and Miguel Torres-Cisneros. 2021. "In-Line Mach–Zehnder Interferometers Based on a Capillary Hollow-Core Fiber Using Vernier Effect for a Highly Sensitive Temperature Sensor" Sensors 21, no. 16: 5471. https://doi.org/10.3390/s21165471
APA StyleMarrujo-García, S., Hernández-Romano, I., May-Arrioja, D. A., Minkovich, V. P., & Torres-Cisneros, M. (2021). In-Line Mach–Zehnder Interferometers Based on a Capillary Hollow-Core Fiber Using Vernier Effect for a Highly Sensitive Temperature Sensor. Sensors, 21(16), 5471. https://doi.org/10.3390/s21165471