A Cell’s Viscoelasticity Measurement Method Based on the Spheroidization Process of Non-Spherical Shaped Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Setup
2.2. Preparation and Spheroidization of Porcine Fetal Fibroblast
- (1)
- Give negative pressure in the micropipette to aspirate the cell into the micropipette;
- (2)
- Give positive pressure in the micropipette to eject the capsule-like porcine fetal fibroblast out of the micropipette;
- (3)
- Record the length and the width of the non-spherical shaped cell;
- (4)
- The end of the spheroidization process. The pressure was adjusted by hand. The cells were placed near the tip of micropipette initially and aspirated into the micropipette for more than 10 s. The images were captured with 50 frames per second and measured with 2 frames per minute. The initial ratio was determined by the inner diameter of micropipette and the cell volume in the experiment. The method of detecting the size of capsule-like fetal fibroblast is described in Appendix A.
2.3. Spheroidization of Silicone Oil
- (1)
- Drop culture medium M199 (Sigma) into a petri dish (Corning, 430165 35 mm × 10 mm). Overlay M199 drop with silicone oil (Sigma-Aldrich, St. Louis, MO, USA). The pink liquid in Figure 4 represents M199 and the blue liquid represents the silicone oil.
- (2)
- Move the micropipette tip into the silicone oil drop. Give negative pressure in the micropipette to aspirate some silicone oil into the micropipette.
- (3)
- Move the micropipette tip into M199 solution. Provide positive pressure in the micropipette to eject silicone into M199 solution. Record the silicone oil spheroidization process with a high-speed camera.
2.4. Viscoelastic Model
- (1)
- The inner material of fibroblast is homogeneous and isotropic. Based on this assumption we can get global cell properties.
- (2)
- The fibroblast is incompressible. It is for the ease of simulation.
- (3)
- The influence of gravity and pressure variance because of different depth is negligible. It is reasonable by comparing the gravity and pressure variance with hydrostatic pressure (about 1/106 in micron scale).
2.5. Simulation of the Spheroidization Process
3. Results
3.1. Spheroidization Result of Porcine Fetal Fibroblast and Its Simulation
3.2. Spheroidization Result of Silicone Oil and Its Simulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Size Measurements of Porcine Fetal Fibroblast and Silicone Oil
Appendix B. Simulation Procedure
Appendix C. Surface Tension Coefficient Measurement of Silicone Oil
References
- Liu, X.; Shi, J.; Zong, Z.; Wan, K.T.; Sun, Y. Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation. Ann. Biomed. Eng. 2012, 40, 2122–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murayama, Y.; Mizuno, J.; Kamakura, H.; Fueta, Y.; Nakamura, H.; Akaishi, K.; Anzai, K.; Watanabe, A.; Inui, H.; Omata, S. Mouse zona pellucida dynamically changes its elasticity during oocyte maturation, fertilization and early embryo development. Hum. Cell 2006, 19, 119–125. [Google Scholar] [CrossRef]
- Jia, Z.; Feng, Z.; Wang, L.; Li, H.; Wang, H.; Xu, D.; Zhao, X.; Feng, D.; Feng, X. Resveratrol reverses the adverse effects of a diet-induced obese murine model on oocyte quality and zona pellucida softening. Food Funct. 2018, 9, 2623–2633. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Kumar, S. Biophysical regulation of tumor cell invasion: Moving beyond matrix stiffness. Integr. Biol. 2011, 3, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Darling, E.M.; Topel, M.; Zauscher, S.; Vail, T.P.; Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 2008, 41, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz, J.; Buscemi, L.; Grabulosa, M.; Trepat, X.; Fabry, B.; Farre, R.; Navajas, D. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 2003, 84, 2071–2079. [Google Scholar] [CrossRef] [Green Version]
- Efremov, Y.M.; Wang, W.H.; Hardy, S.D.; Geahlen, R.L.; Raman, A. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Garcia, P.D.; Garcia, R. Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy. Nanoscale 2018, 10, 19799–19809. [Google Scholar] [CrossRef]
- Benaglia, S.; Amo, C.A.; Garcia, R. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale 2019, 11, 15289–15297. [Google Scholar] [CrossRef] [Green Version]
- Parvini, C.H.; Saadi, M.A.S.R.; Solares, S.D. Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy. Beilstein J. Nanotechnol. 2020, 11, 922–937. [Google Scholar] [CrossRef] [PubMed]
- Parvini, C.H.; Cartagena-Rivera, A.X.; Solares, S.D. Viscoelastic Parameterization of Human Skin Cells to Characterize Material Behavior at Multiple Timescales. bioRxiv 2021. [Google Scholar] [CrossRef]
- Laurent, V.M.; Henon, S.; Planus, E.; Fodil, R.; Balland, M.; Isabey, D.; Gallet, F. Assessment of mechanical properties of adherent living cells by bead micromanipulation: Comparison of magnetic twisting cytometry vs optical tweezers. J. Biomech. Eng. 2002, 124, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Bausch, A.R.; Moller, W.; Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 1999, 76, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.L.; Liu, C.X.; Duan, J.F.; Jiang, Y.Q.; Han, X.H.; Li, Z.H.; Cheng, B.Y.; Zhang, D.Z. Mechanical properties of breast cancer cell membrane studied with optical tweezers. Chin. Phys. Lett. 2004, 21, 2543–2546. [Google Scholar]
- Li, Y.J.; Wen, C.; Xie, H.M.; Ye, A.P.; Yin, Y.J. Mechanical property analysis of stored red blood cell using optical tweezers. Colloids Surf. B 2009, 70, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Rosenbluth, M.J.; Lam, W.A.; Fletcher, D.A. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 2008, 8, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Shevkoplyas, S.S.; Yoshida, T.; Munn, L.L.; Bitensky, M.W. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 2005, 77, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Bow, H.; Pivkin, I.V.; Diez-Silva, M.; Goldfless, S.J.; Dao, M.; Niles, J.C.; Suresh, S.; Han, J. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 2011, 11, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Evans, E.; Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 1989, 56, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Mohammadalipour, A.; Choi, Y.E.; Benencia, F.; Burdick, M.M.; Tees, D.F.J. Investigation of mechanical properties of breast cancer cells using micropipette aspiration technique. FASEB J. 2012, 26, 905–909. [Google Scholar] [CrossRef]
- Sohail, T.; Tang, T.; Nadler, B. Micropipette aspiration of an inflated fluid-filled spherical membrane. Z. Angew. Math. Phys. 2012, 63, 737–757. [Google Scholar] [CrossRef]
- Kamat, N.P.; Lee, M.H.; Lee, D.; Hammer, D.A. Micropipette aspiration of double emulsion-templated polymersomes. Soft Matter 2011, 7, 9863–9866. [Google Scholar] [CrossRef]
- Hochmuth, R.M. Micropipette aspiration of living cells. J. Biomech. 2000, 33, 15–22. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, M.; Huang, J.; Sun, M.; Zhao, X.; Zhao, Q. Robotic Micropipette Aspiration for Multiple Cells. Micromachines 2019, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Wu, M.; Cui, M.; Qin, Y.; Yu, J.; Sun, M.; Zhao, X.; Feng, X. A novel pneumatic micropipette aspiration method using a balance pressure model. Rev. Sci. Instrum. 2013, 84, 123703. [Google Scholar] [CrossRef]
- Jones, W.R.; Ting-Beall, H.P.; Lee, G.M.; Kelley, S.S.; Hochmuth, R.M.; Guilak, F. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 1999, 32, 119–127. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Cui, M.; Sun, M.; Huang, J.; Zhao, X. Evaluation of the deformability of the cell’s zona pellucida based on the subpixel cell contour detection algorithm. In Proceedings of the 35th Chinese Control Conference (CCC), Chengdu, China, 29 August 2016; p. 9109. [Google Scholar]
- Liu, Y.W.; Cui, M.S.; Sun, Y.M.; Feng, Z.Y.; Bai, Y.X.; Sun, M.Z.; Zhao, Q.L.; Zhao, X. Oocyte orientation selection method based on the minimum strain position in the penetration process. J. Appl. Phys. 2019, 125, 154701. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wang, X.F.; Zhao, Q.L.; Zhao, X.; Sun, M.Z. Robotic Batch Somatic Cell Nuclear Transfer Based on Microfluidic Groove. IEEE Trans. Autom. Sci. Eng. 2020, 17, 2097–2106. [Google Scholar] [CrossRef]
- Oldroyd, J.G. On the Formulation of Rheological Equations of State; Royal Society: London, UK, 1950; p. 524. [Google Scholar]
- Olsson, F.; Yström, J. Some properties of the Upper Convected Maxwell model for viscoelastic fluid flow. J. Non-Newtonian Fluid Mech. 1993, 48, 125–145. [Google Scholar] [CrossRef]
- Lim, C.T.; Zhou, E.H.; Quek, S.T. Mechanical models for living cells - A review. J. Biomech. 2006, 39, 195–216. [Google Scholar] [CrossRef]
- Benoit, M.; Gaub, H.E. Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs 2002, 172, 174–189. [Google Scholar] [CrossRef] [Green Version]
- Darling, E.M.; Zauscher, S.; Block, J.A.; Guilak, F. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: Do cell properties reflect metastatic potential? Biophys. J. 2007, 92, 1784–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartagena, A.; Raman, A. Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods. Biophys. J. 2014, 106, 1033–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, Y.; Cui, M.; Zhao, X.; Sun, M.; Zhao, X. A Cell’s Viscoelasticity Measurement Method Based on the Spheroidization Process of Non-Spherical Shaped Cell. Sensors 2021, 21, 5561. https://doi.org/10.3390/s21165561
Liu Y, Zhang Y, Cui M, Zhao X, Sun M, Zhao X. A Cell’s Viscoelasticity Measurement Method Based on the Spheroidization Process of Non-Spherical Shaped Cell. Sensors. 2021; 21(16):5561. https://doi.org/10.3390/s21165561
Chicago/Turabian StyleLiu, Yaowei, Yujie Zhang, Maosheng Cui, Xiangfei Zhao, Mingzhu Sun, and Xin Zhao. 2021. "A Cell’s Viscoelasticity Measurement Method Based on the Spheroidization Process of Non-Spherical Shaped Cell" Sensors 21, no. 16: 5561. https://doi.org/10.3390/s21165561
APA StyleLiu, Y., Zhang, Y., Cui, M., Zhao, X., Sun, M., & Zhao, X. (2021). A Cell’s Viscoelasticity Measurement Method Based on the Spheroidization Process of Non-Spherical Shaped Cell. Sensors, 21(16), 5561. https://doi.org/10.3390/s21165561