Feasibility Study of a Time-of-Flight Brain Positron Emission Tomography Employing Individual Channel Readout Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry of the TOF Brain PET
2.2. TOF PET Detector
2.3. Individual Channel Readout Electronics
2.3.1. Front-End Module (FEM)
2.3.2. Front-End Board for Data Acquisition (FEB/D)
2.3.3. DAQ Board and Clock&Trigger Board
2.4. Performance Evaluation
2.4.1. Energy Resolution, Coincidence Counting Rate, and Coincidence Timing Resolution
2.4.2. Spatial Resolution
2.4.3. Phantom Imaging
3. Results
3.1. Energy Resolution, Coincidence Counting Rate, and Coincidence Timing Resolution
3.2. Spatial Resolution
3.3. Phantom Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, H.; Colloby, S.J.; O’Brien, J.T. PET imaging of brain amyloid in dementia: A review. Int. J. Geriatr. Psychiatry 2011, 26, 991–999. [Google Scholar] [CrossRef]
- Brown, R.K.J.; Bohnen, N.I.; Wong, K.K.; Minoshima, S.; Frey, K.A. Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism. RadioGraphics 2014, 34, 684–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, K.; Majewski, S.; Kinahan, P.E.; Harrison, R.L.; Elston, B.F.; Manjeshwar, R.; Dolinsky, S.; Stolin, A.V.; Brefczynski-Lewis, J.A.; Qi, J. Designing a compact high performance brain PET scanner—Simulation study. Phys. Med. Biol. 2016, 61, 3681–3697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraioli, F.; Punwani, S. Clinical and research applications of simultaneous positron emission tomography and MRI. Br. J. Radiol. 2014, 87, 20130464. [Google Scholar] [CrossRef] [Green Version]
- Tashima, H.; Yamaya, T. Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging. Phys. Med. Biol. 2016, 61, 7205–7220. [Google Scholar] [CrossRef]
- Melroy, S.; Bauer, C.; McHugh, M.; Carden, G.; Stolin, A.; Majewski, S.; Brefczynski-Lewis, J.; Wuest, T. Development and Design of Next-Generation Head-Mounted Ambulatory Microdose Positron-Emission Tomography (AM-PET) System. Sensors 2017, 17, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.H.; Choi, Y.; Hong, K.J.; Kang, J.; Hu, W.; Lim, H.K.; Huh, Y.; Kim, S.; Jung, J.; Kim, K.B. Development of brain PET using GAPD arrays. Med. Phys. 2012, 39, 1227–1233. [Google Scholar] [CrossRef]
- Jung, J.; Choi, Y.; Jung, J.H.; Kim, S.; Im, K.C. Performance evaluation of neuro-PET using silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 819, 182–187. [Google Scholar] [CrossRef]
- Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9781416051985. [Google Scholar]
- Turkington, T.G. Introduction to PET Instrumentation. J. Nucl. Med. Technol. 2001, 29, 4–11. [Google Scholar]
- Vandenberghe, S.; Mikhaylova, E.; D’Hoe, E.; Mollet, P.; Karp, J.S. Recent developments in time-of-flight PET. EJNMMI Phys. 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Moses, W.W. Time of flight in PET revisited. IEEE Trans. Nucl. Sci. 2003, 50, 1325–1330. [Google Scholar] [CrossRef] [Green Version]
- Kadrmas, D.J.; Casey, M.E.; Conti, M.; Jakoby, B.W.; Lois, C.; Townsend, D.W. Impact of Time-of-Flight on PET Tumor Detection. J. Nucl. Med. 2009, 50, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Conti, M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jung, J.; Choi, Y.; Leem, H.; Park, K. Design Optimization of Neuro PET Using Monte Carlo Simulation. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia, 10–17 November 2018. M-07-098. [Google Scholar]
- Leem, H.; Choi, Y.; Jung, J.; Park, K.; Kim, Y. Optimized TOF-PET Detector Using Scintillation Crystal Array for Brain Imaging. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia, 10–17 November 2018. M-14-057. [Google Scholar]
- Lecoq, P. Pushing the Limits in Time-of-Flight PET Imaging. IEEE Trans. Radiat. Plasma Med. Sci. 2017, 1, 473–485. [Google Scholar] [CrossRef]
- Yeom, J.Y.; Vinke, R.; Levin, C.S. Optimizing timing performance of silicon photomultiplier-based scintillation detectors. Phys. Med. Biol. 2013, 58, 1207–1220. [Google Scholar] [CrossRef]
- Anger, H.O. Scintillation Camera. Rev. Sci. Instrum. 1958, 29, 27–33. [Google Scholar] [CrossRef]
- Siegel, S.; Silverman, R.W.; Shao, Y.; Cherry, S.R. Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans. Nucl. Sci. 1996, 43, 1634–1641. [Google Scholar] [CrossRef]
- Downie, E.; Yang, X.; Peng, H. Investigation of analog charge multiplexing schemes for SiPM based PET block detectors. Phys. Med. Biol. 2013, 58, 3943–3964. [Google Scholar] [CrossRef]
- Choe, H.-J.; Choi, Y.; Hu, W.; Yan, J.; Jung, J.H. Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector. Phys. Med. Biol. 2017, 62, N120–N133. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Kang, J.; Jung, J.H. Development of a multiplexed readout with high position resolution for positron emission tomography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 850, 42–47. [Google Scholar] [CrossRef]
- Vinke, R.; Yeom, J.Y.; Levin, C.S. Electrical delay line multiplexing for pulsed mode radiation detectors. Phys. Med. Biol. 2015, 60, 2785–2802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivaswamy, J.; Thottupattu, A.J.; Mehta, R.; Sheelakumari, R.; Kesavadas, C. Construction of Indian human brain atlas. Neurol. India 2019, 67, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Montecchi, M.; Ingram, Q. Study of some optical glues for the Compact Muon Solenoid at the large hadron collider of CERN. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 465, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Van Elburg, D.J.; Noble, S.D.; Hagey, S.; Goertzen, A.L. Comparison of acrylic polymer adhesive tapes and silicone optical grease in light sharing detectors for positron emission tomography. Phys. Med. Biol. 2018, 63, 05NT02. [Google Scholar] [CrossRef]
- Bugalho, R.; Di Francesco, A.; Ferramacho, L.; Leong, C.; Niknejad, T.; Oliveira, L.; Pacher, L.; Rolo, M.; Rivetti, A.; Silveira, M.; et al. Experimental results with TOFPET2 ASIC for time-of-flight applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 912, 195–198. [Google Scholar] [CrossRef]
- TOFPET2 ASIC SiPM Readout System—Hardware User Guide (v1.3); PETsys Electronics S.A.: Oeiras, Portugal, 2018.
- TOFPET2 2C ASIC—Datasheet (Rev 4); PETsys Electronics S.A.: Oeiras, Portugal, 2018.
- Time-of-Flight Front End Board D (TOF FEB/D_v2)—Hardware User Guide (v1.3); PETsys Electronics S.A.: Oeiras, Portugal, 2018.
- Time-of-Flight Data Acquisition Board (TOF DAQ_v2)—Hardware User Guide (v1.3); PETsys Electronics S.A.: Oeiras, Portugal, 2018.
- TOFPET2 ASIC SiPM Readout System—Software User Guide (v2018.07); PETsys Electronics S.A.: Oeiras, Portugal, 2018.
- Simpson, M.L.; Britton, C.L.; Wintenberg, A.L.; Young, G.R. An integrated, CMOS, constant-fraction timing discriminator for multichannel detector systems. IEEE Trans. Nucl. Sci. 1995, 42, 762–766. [Google Scholar] [CrossRef]
- van Sluis, J.; de Jong, J.; Schaar, J.; Noordzij, W.; van Snick, P.; Dierckx, R.; Borra, R.; Willemsen, A.; Boellaard, R. Performance Characteristics of the Digital Biograph Vision PET/CT System. J. Nucl. Med. 2019, 60, 1031–1036. [Google Scholar] [CrossRef]
- Nemallapudi, M.V.; Gundacker, S.; Lecoq, P.; Auffray, E.; Ferri, A.; Gola, A.; Piemonte, C. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca. Phys. Med. Biol. 2015, 60, 4635–4649. [Google Scholar] [CrossRef]
Description | TOFPET2 (Version 2c) |
---|---|
Technology | 110 nm CMOS |
Supply voltage | 1.2 V, 2.5 V |
Power consumption | 8.2 mW/channel |
Main clock frequency | 400 MHz |
TDC clock frequency | 200 MHz |
TDC time bin | 31 ps |
TDC resolution | 20 ps (r.m.s.) |
QDC dynamic range | 0–1500 pC |
Maximum data rate | 3.2 Gbit/s |
Maximum output event rate | 40 Mevent/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.; Jung, J.; Choi, Y.; Leem, H.; Kim, Y. Feasibility Study of a Time-of-Flight Brain Positron Emission Tomography Employing Individual Channel Readout Electronics. Sensors 2021, 21, 5566. https://doi.org/10.3390/s21165566
Park K, Jung J, Choi Y, Leem H, Kim Y. Feasibility Study of a Time-of-Flight Brain Positron Emission Tomography Employing Individual Channel Readout Electronics. Sensors. 2021; 21(16):5566. https://doi.org/10.3390/s21165566
Chicago/Turabian StylePark, Kuntai, Jiwoong Jung, Yong Choi, Hyuntae Leem, and Yeonkyeong Kim. 2021. "Feasibility Study of a Time-of-Flight Brain Positron Emission Tomography Employing Individual Channel Readout Electronics" Sensors 21, no. 16: 5566. https://doi.org/10.3390/s21165566
APA StylePark, K., Jung, J., Choi, Y., Leem, H., & Kim, Y. (2021). Feasibility Study of a Time-of-Flight Brain Positron Emission Tomography Employing Individual Channel Readout Electronics. Sensors, 21(16), 5566. https://doi.org/10.3390/s21165566