Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-Band Wi-Fi
Abstract
:1. Introduction
2. Related Works
3. Preliminary
4. System Model
5. Proposed Ranging Method
Algorithm 1 Proposed localization procedure. |
|
6. Performance Evaluation
6.1. Ray-Tracing-Based Simulation
6.2. Analysis of the Ranging Accuracy
6.3. Analysis of the Neural Network Structure
6.4. Analysis of Positioning Accuracy
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Netw. 2018, 144, 17–39. [Google Scholar] [CrossRef]
- Li, Y.; Yan, K. Indoor Localization Based on Radio and Sensor Measurements. IEEE Sens. J. 2021. [Google Scholar] [CrossRef]
- He, S.; Chan, S.H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2015, 18, 466–490. [Google Scholar] [CrossRef]
- Zanella, A. Best practice in RSS measurements and ranging. IEEE Commun. Surv. Tutor. 2016, 18, 2662–2686. [Google Scholar] [CrossRef]
- Patwari, N.; Ash, J.N.; Kyperountas, S.; Hero, A.O.; Moses, R.L.; Correal, N.S. Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 2005, 22, 54–69. [Google Scholar] [CrossRef]
- IEEE P802. 11 Wireless LANs TGn Channel Models. IEEE 802.11-03/940r4. 2004. Available online: https://mentor.ieee.org/802.11/dcn/03/11-03-0940-04-000n-tgn-channel-models.doc (accessed on 30 June 2021).
- Barsocchi, P.; Lenzi, S.; Chessa, S.; Giunta, G. A Novel Approach to Indoor RSSI Localization by Automatic Calibration of the Wireless Propagation Model. In Proceedings of the VTC Spring 2009—IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 26–29 April 2009; pp. 1–5. [Google Scholar]
- Solahuddin, Y.; Mardeni, R. Indoor empirical path loss prediction model for 2.4 GHz 802.11 n network. In Proceedings of the 2011 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 25–27 November 2011; pp. 12–17. [Google Scholar]
- Nurminen, H.; Talvitie, J.; Ali-Löytty, S.; Müller, P.; Lohan, E.S.; Piché, R.; Renfors, M. Statistical path loss parameter estimation and positioning using RSS measurements in indoor wireless networks. In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Penang, Malaysia, 3–15 November 2012; pp. 1–9. [Google Scholar]
- Bel, A.; Vicario, J.L.; Seco-Granados, G. Localization algorithm with on-line path loss estimation and node selection. Sensors 2011, 11, 6905–6925. [Google Scholar] [CrossRef] [PubMed]
- Galván-Tejada, C.E.; García-Vázquez, J.P.; Galván-Tejada, J.I.; Delgado-Contreras, J.R.; Brena, R.F. Infrastructure-less indoor localization using the microphone, magnetometer and light sensor of a smartphone. Sensors 2015, 15, 20355–20372. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, I.; Hur, S.; Park, S.; Park, Y. DeepLocate: Smartphone based indoor localization with a deep neural network ensemble classifier. Sensors 2020, 20, 133. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Bergmann, J. A pedestrian dead reckoning method for head-mounted sensors. Sensors 2020, 20, 6349. [Google Scholar] [CrossRef]
- Xiao, A.; Chen, R.; Li, D.; Chen, Y.; Wu, D. An indoor positioning system based on static objects in large indoor scenes by using smartphone cameras. Sensors 2018, 18, 2229. [Google Scholar] [CrossRef] [Green Version]
- Delamare, M.; Duval, F.; Boutteau, R. A New Dataset of People Flow in an Industrial Site with UWB and Motion Capture Systems. Sensors 2020, 20, 4511. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Yang, D.; Chen, Z.; Tan, G. 3-D BLE indoor localization based on denoising autoencoder. IEEE Access 2017, 5, 12751–12760. [Google Scholar] [CrossRef]
- Al-Madani, B.; Orujov, F.; Maskeliūnas, R.; Damaševičius, R.; Venčkauskas, A. Fuzzy logic type-2 based wireless indoor localization system for navigation of visually impaired people in buildings. Sensors 2019, 19, 2114. [Google Scholar] [CrossRef] [Green Version]
- Seco, F.; Jiménez, A.R. Smartphone-based cooperative indoor localization with RFID technology. Sensors 2018, 18, 266. [Google Scholar] [CrossRef] [Green Version]
- Au, E. The Latest Progress on IEEE 802.11 mc and IEEE 802.11 ai [Standards]. IEEE Veh. Technol. Mag. 2016, 11, 19–21. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Liu, Z.; Guo, G.; Ye, F.; Chen, L. Wi-Fi fine time measurement: Data analysis and processing for indoor localisation. J. Navig. 2020, 73, 1106–1128. [Google Scholar] [CrossRef]
- Ibrahim, M.; Liu, H.; Jawahar, M.; Nguyen, V.; Gruteser, M.; Howard, R.; Yu, B.; Bai, F. Verification: Accuracy evaluation of WiFi fine time measurements on an open platform. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 417–427. [Google Scholar]
- Han, K.; Yu, S.M.; Kim, S.L.; Ko, S.W. Exploiting User Mobility for WiFi RTT Positioning: A Geometric Approach. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, B.; Huang, P.; Xue, W.; Li, Q.; Zhu, J.; Qiu, L. Kalman filter-based data fusion of wi-fi rtt and pdr for indoor localization. IEEE Sens. J. 2021, 21, 8479–8490. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Chen, L.; Guo, G.; Ye, F.; Liu, Z. A robust dead reckoning algorithm based on Wi-Fi FTM and multiple sensors. Remote Sens. 2019, 11, 504. [Google Scholar] [CrossRef] [Green Version]
- ITU-R. Propagation Data and Prediction Methods for the Planning of Indoor Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 450 GHz. Recommendation ITU-R P. 1238-10. 2019. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1238-10-201908-I!!PDF-E.pdf (accessed on 30 June 2021).
- 3GPP. Study on Channel Model for Frequencies from 0.5 to 100 GHz. 3GPP TR 38.901 V16.1.0. 2019. Available online: https://www.3gpp.org/ftp/Specs/archive/38_series/38.901/38901-g10.zip (accessed on 30 June 2021).
- Common, L.T. Propagation Losses through Common Building Materials 2.4 GHz vs. 5 GHz; E10589; Magis Network, Inc.: San Diego, CA, USA, 2002. [Google Scholar]
- Obeidat, H.; Asif, R.; Ali, N.; Dama, Y.; Obeidat, O.; Jones, S.; Shuaieb, W.; Al-Sadoon, M.A.; Hameed, K.; Alabdullah, A.; et al. An indoor path loss prediction model using wall correction factors for wireless local area network and 5G indoor networks. Radio Sci. 2018, 53, 544–564. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Mao, S. CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet Things J. 2016, 3, 1113–1123. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Han, Y.; Lai, H.Q.; Zhang, F.; Liu, K.R. Achieving centimeter-accuracy indoor localization on WiFi platforms: A multi-antenna approach. IEEE Internet Things J. 2016, 4, 122–134. [Google Scholar] [CrossRef]
- Wang, W.; Marelli, D.; Fu, M. Dynamic Indoor Localization Using Maximum Likelihood Particle Filtering. Sensors 2021, 21, 1090. [Google Scholar] [CrossRef] [PubMed]
- Own, C.M.; Hou, J.; Tao, W. Signal Fuse Learning Method With Dual Bands WiFi Signal Measurements in Indoor Positioning. IEEE Access 2019, 7, 131805–131817. [Google Scholar] [CrossRef]
- Agata, Y.; Hong, J.; Ohtsuki, T. Room-level proximity detection based on RSS of dual-band Wi-Fi signals. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6. [Google Scholar]
- Jo, H.J.; Kim, S. Indoor smartphone localization based on LOS and NLOS identification. Sensors 2018, 18, 3987. [Google Scholar] [CrossRef] [Green Version]
- Yang, J. Indoor Localization System Using Dual-Frequency Bands and Interpolation Algorithm. IEEE Internet Things J. 2020, 7, 11183–11194. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, H.; Wang, J.; Gao, H.; Liu, J. Robust Wi-Fi indoor localization with KPCA feature extraction of dual band signals. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macao, China, 5–8 December 2017; pp. 908–913. [Google Scholar]
- Kumar, C.; Rajawat, K. Dictionary-based statistical fingerprinting for indoor localization. IEEE Trans. Veh. Technol. 2019, 68, 8827–8841. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Zhuang, Y.; Gao, Z.; Zhang, P.; El-Sheimy, N. Deep reinforcement learning (DRL): Another perspective for unsupervised wireless localization. IEEE Internet Things J. 2019, 7, 6279–6287. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Torki, M.; ElNainay, M. CNN based indoor localization using RSS time-series. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 01044–01049. [Google Scholar]
- Liu, J.; Liu, N.; Pan, Z.; You, X. AutLoc: Deep autoencoder for indoor localization with RSS fingerprinting. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Friis, H.T. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Coluccia, A.; Ricciato, F. RSS-based localization via Bayesian ranging and iterative least squares positioning. IEEE Commun. Lett. 2014, 18, 873–876. [Google Scholar] [CrossRef]
- He, Y.; Bilgic, A. Iterative least squares method for global positioning system. Adv. Radio Sci. ARS 2011, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 30 June 2021).
- Jung, J.H.; Lee, J.; Lee, J.H.; Kim, Y.H.; Kim, S.C. Ray-tracing-aided modeling of user-shadowing effects in indoor wireless channels. IEEE Trans. Antennas Propag. 2014, 62, 3412–3416. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, Y.; Lee, S.; Cho, W.; Kim, S.C. Estimation of Room Shape Using Radio Propagation Channel Analysis. IEEE Sens. J. 2019, 19, 12316–12324. [Google Scholar] [CrossRef]
Ranging Method | Ranging Error [m] | |||
---|---|---|---|---|
25%-Tile | 50%-Tile | 90%-Tile | Average | |
Benchmark1 | 0.96 | 2.60 | 9.75 | 4.05 |
Benchmark2 | 1.06 | 2.71 | 8.92 | 3.78 |
Benchmark3 | 1.05 | 2.57 | 9.67 | 4.580 |
Benchmark4 | 0.903 | 2.33 | 7.65 | 3.23 |
Benchmark5 | 0.88 | 2.68 | 7.85 | 3.471 |
Proposed method | 0.53 | 1.49 | 6.28 | 2.52 |
Ranging Method | Positioning Error [m] | |||
---|---|---|---|---|
25%-Tile | 50%-Tile | 90%-Tile | Average | |
Benchmark1 | 1.85 | 2.84 | 6.09 | 3.82 |
Benchmark2 | 2.11 | 3.33 | 6.63 | 4.98 |
Benchmark3 | 1.66 | 2.56 | 5.69 | 11.38 |
Benchmark4 | 1.67 | 2.73 | 5.70 | 28.38 |
Benchmark5 | 1.93 | 3.03 | 6.33 | 4.82 |
Proposed method | 1.14 | 1.99 | 5.19 | 3.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.-h.; Park, K.-M.; Kim, Y.-H.; Kim, S.-C. Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-Band Wi-Fi. Sensors 2021, 21, 5583. https://doi.org/10.3390/s21165583
Lee B-h, Park K-M, Kim Y-H, Kim S-C. Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-Band Wi-Fi. Sensors. 2021; 21(16):5583. https://doi.org/10.3390/s21165583
Chicago/Turabian StyleLee, Byeong-ho, Kyoung-Min Park, Yong-Hwa Kim, and Seong-Cheol Kim. 2021. "Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-Band Wi-Fi" Sensors 21, no. 16: 5583. https://doi.org/10.3390/s21165583
APA StyleLee, B. -h., Park, K. -M., Kim, Y. -H., & Kim, S. -C. (2021). Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-Band Wi-Fi. Sensors, 21(16), 5583. https://doi.org/10.3390/s21165583