Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers
Abstract
:1. Introduction
2. Ferrimagnetism
3. Spin Valves
Spin Valves with RE–TM Alloys
4. Spin–Orbit Torque Devices
4.1. RE–TM Ferrimagnetic Alloys in SOT Devices
4.2. SOT Using Topological Insulators
4.3. Examples of SOT-Based Sensors
5. Domain Wall-Based Devices
6. All Optical Switching
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Radu, F.; Sánchez-Barriga, J. Ferrimagnetic Heterostructures for Applications in Magnetic Recording; Elsevier B.V: Amsterdam, The Netherlands, 2018; ISBN 9780128135945. [Google Scholar]
- Grünberg, P.; Schreiber, R.; Pang, Y.; Brodsky, M.B.; Sowers, H. Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Phys. Rev. Lett. 1986, 57, 2442–2445. [Google Scholar] [CrossRef] [PubMed]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Van Dau, F.N.; Petroff, F.; Eitenne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, H.A.M.; Clemens, W.; Gieres, G.; Rupp, G.; Schelter, W.; Vieth, M. GMR sensor scheme with artificial antiferromagnetic subsystem. IEEE Trans. Magn. 1996, 32, 4624–4626. [Google Scholar] [CrossRef]
- Amaral, J.; Pinto, V.; Costa, T.; Gaspar, J.; Ferreira, R.; Paz, E.; Cardoso, S.; Freitas, P.P. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons. IEEE Trans. Magn. 2013, 49, 3512–3515. [Google Scholar] [CrossRef]
- Iwasaki, S.I. Perpendicular magnetic recording - Its development and realization. J. Magn. Magn. Mater. 2012, 324, 244–247. [Google Scholar] [CrossRef]
- Weller, D.; Moser, A. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 1999, 35, 4423–4439. [Google Scholar] [CrossRef]
- Chikazumi, S.; Graham, C.D. Physics of Ferromagnetism; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Piramanayagam, S.N. Perpendicular recording media for hard disk drives. J. Appl. Phys. 2007, 102, 2. [Google Scholar] [CrossRef]
- Choe, G.; Zhou, J.N.; Demczyk, B.; Yu, M.; Zheng, M.; Weng, R.; Chekanov, A.; Johnson, K.E.; Liu, F.; Stoev, K. Highly in-plane oriented CoCrPtB longitudinal media for 130-Gb/in2 recording. IEEE Trans. Magn. 2003, 39, 633–638. [Google Scholar] [CrossRef]
- Johnson, M.T.; Jungblut, R.; Kelly, P.J.; den Broeder, F.J.A. Perpendicular magnetic anisotropy of multilayers: Recent insights. J. Magn. Magn. Mater. 1995, 148, 118–124. [Google Scholar] [CrossRef]
- Ding, M.; Poon, S.J. Tunable perpendicular magnetic anisotropy in GdFeCo amorphous films. J. Magn. Magn. Mater. 2013, 339, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Sajieddine, M.; Bauer, P.; Bruson, A.; Marchal, G. Perpendicular magnetic anisotropy in an annealed Fe/Tb multilayer: A57Fe Mössbauer study. Solid State Commun. 1996, 99, 965–968. [Google Scholar] [CrossRef]
- Tudu, B.; Tiwari, A. Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications. Vacuum 2017, 146, 329–341. [Google Scholar] [CrossRef]
- Sayama, J.; Mizutani, K.; Asahi, T.; Osaka, T. Thin films of SmCo5 with very high perpendicular magnetic anisotropy. Appl. Phys. Lett. 2004, 85, 5640–5642. [Google Scholar] [CrossRef]
- Lu, B.; Weller, D.; Sunder, A.; Ju, G.; Wu, X.; Brockie, R.; Nolan, T.; Brucker, C.; Ranjan, R. High anisotropy CoCrPt(B) media for perpendicular magnetic recording. J. Appl. Phys. 2003, 93, 6751–6753. [Google Scholar] [CrossRef]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, L.; Diény, B.; Pirro, P.; Hillebrands, B. Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Seigler, M.; Challener, W.; Gage, E.; Gokemeijer, N.; Ju, G.; Lu, B.; Pelhos, K.; Peng, C.; Rottmayer, R.; Yang, X.; et al. Integrated near field transducer heat assisted magnetic recording head: Design and recording demonstration. IEEE Trans. Magn. 2008, 44, 119–124. [Google Scholar] [CrossRef]
- Wu, A.Q.; Kubota, Y.; Klemmer, T.; Rausch, T.; Peng, C.; Peng, Y.; Karns, D.; Zhu, X.; Ding, Y.; Chang, E.K.C.; et al. HAMR areal density demonstration of 1+ tbpsi on spinstand. IEEE Trans. Magn. 2013, 49, 779–782. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; IEEE Press/John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 0471477419. [Google Scholar]
- Campbell, I.A. Indirect exchange for rare earths in metals. J. Phys. F Met. Phys. 1972, 2, L47–L50. [Google Scholar] [CrossRef]
- Hansen, P. Chapter 4 Magnetic amorphous alloys. Handb. Magn. Mater. 1991, 6, 289–452. [Google Scholar] [CrossRef]
- Hansen, P.; Clausen, C.; Much, G.; Rosenkranz, M.; Witter, K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 1989, 66, 756–767. [Google Scholar] [CrossRef]
- González, J.A.; Andrés, J.P.; López de la Torre, M.A.; Riveiro, J.M. Magnetic properties of thin film GdCoRe amorphous alloys. J. Alloys Compd. 2001, 323–324, 448–450. [Google Scholar] [CrossRef]
- Andrés, J.P.; González, J.A.; Hase, T.P.A.; Tanner, B.K.; Riveiro, J.M. Artificial ferrimagnetic structure and thermal hysteresis in Gd0.47Co0.53/Co multilayers. Phys. Rev. B 2008, 77, 144407. [Google Scholar] [CrossRef]
- Andrés, J.P.; Sacedón, J.L.; Colino, J.; Riveiro, J.M. Interdiffusion up to the eutectic composition and vitrification in Gd/Co multilayers. J. Appl. Phys. 2000, 87, 2483–2489. [Google Scholar] [CrossRef]
- Bertero, G.A.; Hufnagel, T.C.; Clemens, B.M.; Sinclair, R. TEM analysis of Co-Gd and Co-Gd multilayer structures. J. Mater. Res. 1993, 8, 771–774. [Google Scholar] [CrossRef]
- González, J.A.; Andrés, J.P.; Arranz, M.A.; López De La Torre, M.A.; Riveiro, J.M. Interdiffusion and magnetic properties of Gd1-xCox/Co multilayers. J. Phys. Condens. Matter 2002, 14, 5061–5066. [Google Scholar] [CrossRef]
- González, J.A.; Andrés, J.P.; Arranz, M.A.; López de la Torre, M.A.; Riveiro, J.M. Electrical resistivity and interdiffusion in Gd(1−x)Co(x)/Co multilayers. J. Appl. Phys. 2002, 92, 914–919. [Google Scholar] [CrossRef]
- González, J.A.; Andrés, J.P.; López de la Torre, M.A.; Riveiro, J.M.; Hase, T.P.A.; Tanner, B.K. X-ray study of the interdiffusion and interfacial structure in ferrimagnetic Gd1−xCox/Co multilayers. J. Appl. Phys. 2003, 93, 7247–7249. [Google Scholar] [CrossRef]
- Diény, B. Dieny magnetism Giant magnetoresistance in spin-valve multilayers. J. Magn. Magn. Mater. 1994, 136, 335–359. [Google Scholar] [CrossRef]
- Meiklejohn, W.H.; Bean, C.P. New magnetic anisotropy. Phys. Rev. 1956, 102, 1413–1414. [Google Scholar] [CrossRef]
- Nogués, J.; Schuller, I.K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar] [CrossRef]
- Katti, R.R. Current-in-plane pseudo-spin-valve device performance for giant magnetoresistive random access memory applications (invited). J. Appl. Phys. 2002, 91, 7245–7250. [Google Scholar] [CrossRef]
- Samal, D.; Anil Kumar, P.S. Giant magnetoresistance. Resonance 2008, 13, 343–354. [Google Scholar] [CrossRef]
- Bellouard, C.; George, B.; Marchal, G.; Maloufi, N.; Eugène, J. Influence of the thickness of the CoFe layer on the negative spin-valve effect in CoFe/Ag/CoFeGd trilayers. J. Magn. Magn. Mater. 1997, 165, 312–315. [Google Scholar] [CrossRef]
- Lai, C.H.; Lin, C.C.; Chen, B.M.; Shieh, H.P.D.; Chang, C.R. Positive giant magnetoresistance in ferrimagnetic/Cu/ferrimagnetic films. J. Appl. Phys. 2001, 89, 7124–7126. [Google Scholar] [CrossRef] [Green Version]
- Svalov, A.V.; Savin, P.A.; Kurlyandskaya, G.V.; Gutiérrez, J.; Barandiarán, J.M.; Vas, V.O. Spin-Valve Structures with Co–Tb-Based Multilayers. IEEE Trans. Magn. 2002, 38, 2782–2784. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, L.; Sun, J.Z.; Parkin, S.S.P. Temperature dependence of current-induced magnetization switching in spin valves with a ferrimagnetic CoGd free layer. Phys. Rev. Lett. 2006, 97, 217202. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.Z.; You, B.; Zhang, X.X.; Gao, T.R.; Zhou, S.M.; Du, J. Inverse giant magnetoresistance in FeCu Gd1-x Cox spin-valves. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 74, 024411. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.J.; Du, J.; Zhang, J.; You, B.; Sun, L.; Zhang, W.; Hu, A.; Zhou, S.M. Influence of the thickness of the FeCoGd layer on the magnetoresistance in FeCoGd-based spin valves and magnetic tunnel junctions. J. Phys. D Appl. Phys. 2008, 41, 215008. [Google Scholar] [CrossRef]
- Svalov, A.V.; Fernández, A.; Tejedor, M.; Kurlyandskaya, G.V. The effect of the additional biasing on the switching process in pseudo spin-valve structure. Vacuum 2007, 81, 1012–1015. [Google Scholar] [CrossRef]
- Svalov, A.V.; Vas’kovskiy, V.O.; Orue, I.; Kurlyandskaya, G.V. Tailoring of switching field in GdCo-based spin valves by inserting Co layer. J. Magn. Magn. Mater. 2017, 441, 795–798. [Google Scholar] [CrossRef]
- Svalov, A.V.; Kurlyandskaya, G.V.; Vas’kovskiy, V.O. Thermo-sensitive spin valve based on layered artificial ferrimagnet. Appl. Phys. Lett. 2016, 108, 063504. [Google Scholar] [CrossRef]
- Svalov, A.V.; Orue, I.; Kurlyandskaya, G.V. Multi-step magnetization process of Gd-Co/Co/Cu/Co thermo-sensitive spin valves. Electronics 2018, 7, 351. [Google Scholar] [CrossRef] [Green Version]
- Svalov, A.V.; Stepanova, E.A.; Vas, V.O.; Kurlyandskaya, G.V. Thermosensitive Spin Valve Based on an Artificial Ferrimagnet: Magnetization Process in a Wide Range of Fields. Phys. Solid State 2019, 61, 1659–1663. [Google Scholar] [CrossRef]
- Milyaev, M.; Naumova, L.; Chernyshova, T.; Proglyado, V.; Kamensky, I.; Krinitsina, T.; Ryabukhina, M.; Ustinov, V. Magnetization reversal and inverted magnetoresistance of exchange-biased spin valves with a gadolinium layer. J. Appl. Phys. 2017, 121, 123902. [Google Scholar] [CrossRef]
- Romer, S.; Marioni, M.A.; Thorwarth, K.; Joshi, N.R.; Corticelli, C.E.; Hug, H.J.; Oezer, S.; Parlinska-Wojtan, M.; Rohrmann, H. Temperature dependence of large exchange-bias in TbFe-Co/Pt. Appl. Phys. Lett. 2012, 101, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Schubert, C.; Hebler, B.; Schletter, H.; Liebig, A.; Daniel, M.; Abrudan, R.; Radu, F.; Albrecht, M. Interfacial exchange coupling in Fe-Tb/[Co/Pt] heterostructures. Phys. Rev. B-Condens. Matter Mater. Phys. 2013, 87, 1–9. [Google Scholar] [CrossRef]
- Heigl, M.; Vogler, C.; Mandru, A.O.; Zhao, X.; Hug, H.J.; Suess, D.; Albrecht, M. Microscopic Origin of Magnetization Reversal in Nanoscale Exchange-Coupled Ferri/Ferromagnetic Bilayers: Implications for High Energy Density Permanent Magnets and Spintronic Devices. ACS Appl. Nano Mater. 2020, 3, 9218–9225. [Google Scholar] [CrossRef] [PubMed]
- Hebler, B.; Reinhardt, P.; Katona, G.L.; Hellwig, O.; Albrecht, M. Double exchange bias in ferrimagnetic heterostructures. Phys. Rev. B 2017, 95, 104410. [Google Scholar] [CrossRef] [Green Version]
- Radu, F.; Abrudan, R.; Radu, I.; Schmitz, D.; Zabel, H. Perpendicular exchange bias in ferrimagnetic spin valves. Nat. Commun. 2012, 3, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, I.; Vahaplar, K.; Stamm, C.; Kachel, T.; Pontius, N.; Dürr, H.A.; Ostler, T.A.; Barker, J.; Evans, R.F.L.; Chantrell, R.W.; et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 2011, 472, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Iusipova, I.A. Analysis of the Switching Characteristics of MRAM Cells Based on Materials with Uniaxial Anisotropy. Semiconductors 2018, 52, 1982–1988. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, D.; Wong, P.K.J.; Yuan, H.; Jiang, S.; Van Der Laan, G.; Zhai, Y.; Lu, Z. Selective Tuning of Gilbert Damping in Spin-Valve Trilayer by Insertion of Rare-Earth Nanolayers. ACS Appl. Mater. Interfaces 2015, 7, 17070–17075. [Google Scholar] [CrossRef]
- Chen, Q.; Ruan, X.; Yuan, H.; Zhou, X.; Kou, Z.; Huang, Z.; Xu, Y.; Zhai, Y. Interlayer transmission of magnons in dynamic spin valve structures. Appl. Phys. Lett. 2020, 116. [Google Scholar] [CrossRef]
- Zabel, H. Progress in spintronics. Superlattices Microstruct. 2009, 46, 541–553. [Google Scholar] [CrossRef]
- Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353–9358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7. [Google Scholar] [CrossRef]
- Zhao, W.S.; Zhang, Y.; Devolder, T.; Klein, J.O.; Ravelosona, D.; Chappert, C.; Mazoyer, P. Failure and reliability analysis of STT-MRAM. Microelectron. Reliab. 2012, 52, 1848–1852. [Google Scholar] [CrossRef]
- Song, C.; Zhang, R.; Liao, L.; Zhou, Y.; Zhou, X.; Chen, R.; You, Y.; Pan, F. Spin-orbit torques: Materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 2020, 118, 100761. [Google Scholar] [CrossRef]
- Hellman, F.; Hoffmann, A.; Tserkovnyak, Y.; Beach, G.S.D.; Fullerton, E.E.; Leighton, C.; MacDonald, A.H.; Ralph, D.C.; Arena, D.A.; Dürr, H.A.; et al. Interface-Induced Phenomena in Magnetism. Rev. Mod. Phys. 2017, 89, 025006. [Google Scholar] [CrossRef]
- Manchon, A.; Koo, H.C.; Nitta, J.; Frolov, S.M.; Duine, R.A. New perspectives for Rashba spin-orbit coupling. Nat. Mater. 2015, 14, 871–882. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Lee, J.M.; Cai, K.; Yang, H. Recent advances in spin-orbit torques: Moving towards device applications. Appl. Phys. Rev. 2018, 5, 031107. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Matsumoto, T.; Yamane, H.; Kamiko, M.; Yamamoto, R. Perpendicular magnetic anisotropy and magneto-optical properties of (Co-Tb)/Pd multilayers. J. Magn. Magn. Mater. 1999, 198, 357–359. [Google Scholar] [CrossRef]
- Huang, K.F.; Wang, D.S.; Lin, H.H.; Lai, C.H. Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy. Appl. Phys. Lett. 2015, 107, 232407. [Google Scholar] [CrossRef] [Green Version]
- Jamali, M.; Narayanapillai, K.; Qiu, X.; Loong, L.M.; Manchon, A.; Yang, H. Spin-orbit torques in Co/Pd multilayer nanowires. Phys. Rev. Lett. 2013, 111, 246602. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Mann, M.; Pai, C.F.; Tan, A.J.; Beach, G.S.D. Spin-orbit torques in Ta/TbxCo100-xferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. Appl. Phys. Lett. 2016, 109, 232403. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Tan, A.J.; Beach, G.S.D. Effect of annealing on magnetic properties in ferrimagnetic GdCo alloy films with bulk perpendicular magnetic anisotropy. AIP Adv. 2018, 8, 125204. [Google Scholar] [CrossRef] [Green Version]
- Subbotin, I.A.; Pashaev, E.M.; Vasiliev, A.L.; Chesnokov, Y.M.; Prutskov, G.V.; Kravtsov, E.A.; Makarova, M.V.; Proglyado, V.V.; Ustinov, V.V. The influence of microstructure on perpendicular magnetic anisotropy in Co/Dy periodic multilayer systems. Phys. B Condens. Matter 2019, 573, 28–35. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.J.; Liang, B.Q.; Tang, Y.J.; Zhao, H.W.; Xiao, J.Q. Perpendicular anisotropy in the amorphous TbCo/Si multilayers. J. Appl. Phys. 2000, 87, 6845–6847. [Google Scholar] [CrossRef]
- Mishra, R.; Yu, J.; Qiu, X.; Motapothula, M.; Venkatesan, T.; Yang, H. Anomalous Current-Induced Spin Torques in Ferrimagnets near Compensation. Phys. Rev. Lett. 2017, 118, 167201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roschewsky, N.; Matsumura, T.; Cheema, S.; Hellman, F.; Kato, T.; Iwata, S.; Salahuddin, S. Spin-orbit torques in ferrimagnetic GdFeCo alloys. Appl. Phys. Lett. 2016, 109, 112403. [Google Scholar] [CrossRef] [Green Version]
- Roschewsky, N.; Lambert, C.H.; Salahuddin, S. Spin-orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Phys. Rev. B 2017, 96, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Finley, J.; Liu, L. Spin-Orbit-Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys. Phys. Rev. Appl. 2016, 6, 054001. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Richardella, A.; Siddiqui, S.A.; Finley, J.; Samarth, N.; Liu, L. Roomerature Spin-Orbit Torque Switching Induced by a Topological Insulator. Phys. Rev. Lett. 2017, 119, 077702. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Y.; Deng, P.; Pan, Q.; Razavi, S.A.; Wong, K.; Huang, L.; Dai, B.; Shao, Q.; Yu, G.; et al. Spin-Orbit Torque Switching of a Nearly Compensated Ferrimagnet by Topological Surface States. Adv. Mater. 2019, 31, 1901681. [Google Scholar] [CrossRef]
- Treutler, C.P.O. Magnetic sensors for automotive applications. Sens. Actuators A Phys. 2001, 91, 2–6. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, Y.; Yang, Y.; Wu, Y. Magnetic angular position sensor enabled by spin-orbit torque. Appl. Phys. Lett. 2018, 112, 262405. [Google Scholar] [CrossRef]
- Xie, H.; Chen, X.; Luo, Z.; Wu, Y. Spin Torque Gate Magnetic Field Sensor. Phys. Rev. Appl. 2021, 15, 024041. [Google Scholar] [CrossRef]
- Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 1984, 55, 1954–1956. [Google Scholar] [CrossRef]
- Freitas, P.P.; Berger, L. Observation of s-d exchange force between domain walls and electric current in very thin Permalloy films. J. Appl. Phys. 1985, 57, 1266–1269. [Google Scholar] [CrossRef]
- Bang, D.; Van Thach, P.; Awano, H. Current-induced domain wall motion in antiferromagnetically coupled structures: Fundamentals and applications. J. Sci. Adv. Mater. Devices 2018, 3, 389–398. [Google Scholar] [CrossRef]
- Bang, D.; Yu, J.; Qiu, X.; Wang, Y.; Awano, H.; Manchon, A.; Yang, H. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect. Phys. Rev. B 2016, 93, 174424. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J.; Kim, S.K.; Hirata, Y.; Oh, S.H.; Tono, T.; Kim, D.H.; Okuno, T.; Ham, W.S.; Kim, S.; Go, G.; et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 2017, 16, 1187–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurokawa, Y.; Kawamoto, M.; Awano, H. Current-induced domain wall motion attributed to spin Hall effect and Dzyaloshinsky-Moriya interaction in Pt/GdFeCo (100 nm) magnetic wire. Jpn. J. Appl. Phys. 2016, 55, 07MC02. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, J.C.; Choe, S.B.; Shin, K.H. Joule heating in ferromagnetic nanowires: Prediction and observation. Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic Domain-Wall Racetrack Memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef]
- Yang, S.H.; Ryu, K.S.; Parkin, S. Domain-wall velocities of up to 750 m s-1driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 2015, 10, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Parkin, S.; Yang, S.H. Memory on the racetrack. Nat. Nanotechnol. 2015, 10, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Bläsing, R.; Ma, T.; Yang, S.H.; Garg, C.; Dejene, F.K.; N’Diaye, A.T.; Chen, G.; Liu, K.; Parkin, S.S.P. Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Mann, M.; De Brouwer, P.W.P.; Bono, D.; Beach, G.S.D. Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film. Phys. Rev. B 2017, 96, 064410. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, C.D.; Kimel, A.V.; Hansteen, F.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; Rasing, T. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 220402. [Google Scholar] [CrossRef] [Green Version]
- Binder, M.; Weber, A.; Mosendz, O.; Woltersdorf, G.; Izquierdo, M.; Neudecker, I.; Dahn, J.R.; Hatchard, T.D.; Thiele, J.U.; Back, C.H.; et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 134404. [Google Scholar] [CrossRef] [Green Version]
- Hirata, Y.; Kim, D.H.; Okuno, T.; Nishimura, T.; Kim, D.Y.; Futakawa, Y.; Yoshikawa, H.; Tsukamoto, A.; Kim, K.J.; Choe, S.B.; et al. Correlation between compensation temperatures of magnetization and angular momentum in GdFeCo ferrimagnets. Phys. Rev. B 2018, 97, 220403. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, J.; Grollier, J.; Metaxas, P.J. Domain Wall Motion in Nanostructures; Elsevier B.V: Amsterdam, The Netherlands, 2015; Volume 5, ISBN 9780444626349. [Google Scholar]
- Allwood, D.A.; Xiong, G.; Faulkner, C.C.; Atkinson, D.; Petit, D.; Cowburn, R.P. Magnetic domain-wall logic. Science 2005, 309, 1688–1692. [Google Scholar] [CrossRef]
- Diegel, M.; Mattheis, R.; Halder, E. Multiturn counter using movement and storage of 180° magnetic domain walls. Sens. Lett. 2007, 5, 118–122. [Google Scholar] [CrossRef]
- Diegel, M.; Glathe, S.; Mattheis, R.; Scherzinger, M.; Haider, E. A new four bit magnetic domain wall based multiturn counter. IEEE Trans. Magn. 2009, 45, 3792–3795. [Google Scholar] [CrossRef]
- Stanciu, C.D.; Hansteen, F.; Kimel, A.V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007, 99, 047601. [Google Scholar] [CrossRef] [Green Version]
- Kaka, S.; Russek, S.E. Precessional switching of submicrometer spin valves. Appl. Phys. Lett. 2002, 80, 2958–2960. [Google Scholar] [CrossRef] [Green Version]
- Back, C.H.; Allenspach, R.; Weber, W.; Parkin, S.S.P.; Weller, D.; Garwin, E.L.; Siegmann, H.C. Minimum field strength in precessional magnetization reversal. Science 1999, 285, 864–867. [Google Scholar] [CrossRef]
- Tudosa, I.; Stamm, C.; Kashuba, A.B.; King, F.; Siegmann, H.C.; Stöhr, J.; Ju, G.; Lu, B.; Weeler, D. The ultimate speed of magnetic switching in granular recording media. Nature 2004, 428, 831–833. [Google Scholar] [CrossRef] [PubMed]
- Beaurepaire, E.; Merle, J.C.; Daunois, A.; Bigot, J.Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996, 76, 4250–4253. [Google Scholar] [CrossRef]
- Ostler, T.A.; Barker, J.; Evans, R.F.L.; Chantrell, R.W.; Atxitia, U.; Chubykalo-Fesenko, O.; El Moussaoui, S.; Le Guyader, L.; Mengotti, E.; Heyderman, L.J.; et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 2012, 3, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassdenteufel, A.; Hebler, B.; Schubert, C.; Liebig, A.; Teich, M.; Helm, M.; Aeschlimann, M.; Albrecht, M.; Bratschitsch, R. Thermally assisted all-optical helicity dependent magnetic switching in amorphous Fe100-xTbx alloy films. Adv. Mater. 2013, 25, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Alebrand, S.; Gottwald, M.; Hehn, M.; Steil, D.; Cinchetti, M.; Lacour, D.; Fullerton, E.E.; Aeschlimann, M.; Mangin, S. Light-induced magnetization reversal of high-anisotropy TbCo alloy films. Appl. Phys. Lett. 2012, 101, 162408. [Google Scholar] [CrossRef] [Green Version]
- Alebrand, S.; Bierbrauer, U.; Hehn, M.; Gottwald, M.; Schmitt, O.; Steil, D.; Fullerton, E.E.; Mangin, S.; Cinchetti, M.; Aeschlimann, M. Subpicosecond magnetization dynamics in TbCo alloys. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 144404. [Google Scholar] [CrossRef]
- Ciuciulkaite, A.; Mishra, K.; Moro, M.V.; Chioar, I.A.; Rowan-Robinson, R.M.; Parchenko, S.; Kleibert, A.; Lindgren, B.; Andersson, G.; Davies, C.S.; et al. Magnetic and all-optical switching properties of amorphous TbxCo100-x alloys. Phys. Rev. Mater. 2020, 4, 104418. [Google Scholar] [CrossRef]
- Lalieu, M.L.M.; Peeters, M.J.G.; Haenen, S.R.R.; Lavrijsen, R.; Koopmans, B. Deterministic all-optical switching of synthetic ferrimagnets using single femtosecond laser pulses. Phys. Rev. B 2017, 96, 220411. [Google Scholar] [CrossRef] [Green Version]
- Mangin, S.; Gottwald, M.; Lambert, C.H.; Steil, D.; Uhlíř, V.; Pang, L.; Hehn, M.; Alebrand, S.; Cinchetti, M.; Malinowski, G.; et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 2014, 13, 286–292. [Google Scholar] [CrossRef]
- Vahaplar, K.; Kalashnikova, A.M.; Kimel, A.V.; Gerlach, S.; Hinzke, D.; Nowak, U.; Chantrell, R.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; et al. All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 85, 104402. [Google Scholar] [CrossRef]
- Lambert, C.H.; Mangin, S.; Varaprasad, B.S.D.C.S.; Takahashi, Y.K.; Hehn, M.; Cinchetti, M.; Malinowski, G.; Hono, K.; Fainman, Y.; Aeschlimann, M.; et al. All-optical control of ferromagnetic thin films and nanostructures. Science 2014, 345, 1337–1340. [Google Scholar] [CrossRef] [Green Version]
- El Hadri, M.S.; Pirro, P.; Lambert, C.H.; Bergeard, N.; Petit-Watelot, S.; Hehn, M.; Malinowski, G.; Montaigne, F.; Quessab, Y.; Medapalli, R.; et al. Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses. Appl. Phys. Lett. 2016, 108, 092405. [Google Scholar] [CrossRef]
- Sander, D.; Valenzuela, S.O.; Makarov, D.; Marrows, C.H.; Fullerton, E.E.; Fischer, P.; Mccord, J.; Vavassori, P.; Mangin, S.; Pirro, P.; et al. The 2017 Magnetism Roadmap. J. Phys. D Appl. Phys 2017, 50, 363001. [Google Scholar] [CrossRef]
- El Hadri, M.S.; Pirro, P.; Lambert, C.H.; Petit-Watelot, S.; Quessab, Y.; Hehn, M.; Montaigne, F.; Malinowski, G.; Mangin, S. Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses. Phys. Rev. B 2016, 94, 064412. [Google Scholar] [CrossRef] [Green Version]
- El Hadri, M.S.; Hehn, M.; Malinowski, G.; Mangin, S. Materials and devices for all-optical helicity-dependent switching. J. Phys. D Appl. Phys. 2017, 50, 133002. [Google Scholar] [CrossRef]
- Gorchon, J.; Wilson, R.B.; Yang, Y.; Pattabi, A.; Chen, J.Y.; He, L.; Wang, J.P.; Li, M.; Bokor, J. Role of electron and phonon temperatures in the helicity-independent all-optical switching of GdFeCo. Phys. Rev. B 2016, 94, 184406. [Google Scholar] [CrossRef] [Green Version]
- Davies, C.S.; Janssen, T.; Mentink, J.H.; Tsukamoto, A.; Kimel, A.V.; Van Der Meer, A.F.G.; Stupakiewicz, A.; Kirilyuk, A. Pathways for Single-Shot All-Optical Switching of Magnetization in Ferrimagnets. Phys. Rev. Appl. 2020, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.M.; Wang, T.; Reid, A.H.; Savoini, M.; Wu, X.; Koene, B.; Granitzka, P.; Graves, C.E.; Higley, D.J.; Chen, Z.; et al. Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo - Competition with Nanoscale Heterogeneity. Nano Lett. 2015, 15, 6862–6868. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, J.A.; Andrés, J.P.; López Antón, R. Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers. Sensors 2021, 21, 5615. https://doi.org/10.3390/s21165615
González JA, Andrés JP, López Antón R. Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers. Sensors. 2021; 21(16):5615. https://doi.org/10.3390/s21165615
Chicago/Turabian StyleGonzález, Juan Antonio, Juan Pedro Andrés, and Ricardo López Antón. 2021. "Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers" Sensors 21, no. 16: 5615. https://doi.org/10.3390/s21165615
APA StyleGonzález, J. A., Andrés, J. P., & López Antón, R. (2021). Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers. Sensors, 21(16), 5615. https://doi.org/10.3390/s21165615