High-Throughput Phenotyping Approach for the Evaluation of Heat Stress in Korean Ginseng (Panax ginseng Meyer) Using a Hyperspectral Reflectance Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Environmental Conditions and Heat Treatment
2.2. HSI Systems and Image Acquisition
2.3. Data Extraction
2.4. Multivariate Analysis for Classification
2.4.1. Linear Discriminant Analysis (LDA)
2.4.2. Partial Least Squares Discriminant Analysis (PLS-DA)
2.4.3. Main Wavebands Selection for the Classification
3. Results
3.1. Spectral Profile of Ginseng
3.2. LDA Analysis
3.3. PLS-DA Model Results and Main Wavebands Coefficient
3.3.1. Vis/NIR and SWIR Data Analysis
3.3.2. PLS-DA-Based Images for Heat Stress Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.M.; Bae, B.S.; Park, H.W.; Ahn, N.G.; Cho, B.G.; Cho, Y.L.; Kwak, Y.S. Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 2015, 39, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Lee, J.H.; Ahn, I.O. Characteristics of resistant lines to high-temperature injury in ginseng (Panax ginseng CA Meyer). J. Ginseng Res. 2010, 34, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Jha, U.C.; Bohra, A.; Singh, N.P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 2014, 133, 679–701. [Google Scholar] [CrossRef] [Green Version]
- Jayakodi, M.; Lee, S.C.; Yang, T.J. Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars. J. Ginseng Res. 2019, 43, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, K.H.; Lee, S.S.; Kim, E.S.; Ahn, I.O.; In, J.G. Morphological characteristics of ginseng leaves in high-temperature injury resistant and susceptible lines of Panax ginseng Meyer. J. Ginseng Res. 2011, 35, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Lee, D.Y.; Lee, J.H.; Ahn, I.O.; In, J.G. Photosynthetic characteristics of resistance and susceptible lines to high temperature injury in Panax ginseng Meyer. J. Ginseng Res. 2012, 36, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; Gupta, R.; Min, C.W.; Lee, S.H.; Cheon, Y.E.; Meng, Q.F.; Jang, J.W.; Hong, C.E.; Lee, J.Y.; Jo, I.H. Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. J. Ginseng Res. 2019, 43, 143–153. [Google Scholar] [CrossRef]
- Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, A.; Czauderna, T.; Hoffmann, R.; Stein, N.; Schreiber, F. HTPheno: An image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform. 2011, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Spíchal, L.; Panzarová, K.; Casa, R.; Colla, G. High-throughput plant phenotyping for developing novel biostimulants: From lab to field or from field to lab? Front. Plant Sci. 2018, 9, 1197. [Google Scholar] [CrossRef]
- Humplík, J.F.; Lazár, D.; Husičková, A.; Spíchal, L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—A review. Plant Methods 2015, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furbank, R.T.; Tester, M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2018, 125, 5–20. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Behmann, J.; Mahlein, A.K.; Paulus, S.; Kuhlmann, H.; Oerke, E.C.; Plümer, L. Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping. ISPRS J. Photogramm. Remote Sens. 2015, 106, 172–182. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gamon, J.A. Remote sensing of plant functional types. New Phytol. 2010, 186, 795–816. [Google Scholar] [CrossRef]
- Asaari, M.S.M.; Mishra, P.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS J. Photogramm. Remote Sens. 2018, 138, 121–138. [Google Scholar] [CrossRef]
- Sytar, O.; Brestic, M.; Zivcak, M.; Olsovska, K.; Kovar, M.; Shao, H.; He, X. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci. Total Environ. 2017, 578, 90–99. [Google Scholar] [CrossRef]
- Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front. Plant Sci. 2017, 8, 1348. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Cen, H.; Weng, H.; Wan, L.; Abdalla, A.; El Manawy, A.I.; Zhu, Y.; Zhao, N.; Fu, H.; Tang, J. Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality. Plant Methods 2019, 15, 54. [Google Scholar] [CrossRef]
- Park, E.; Lohumi, S.; Cho, B.K. Line-scan imaging analysis for rapid viability evaluation of white-fertilized-egg embryos. Sens. Actuators B Chem. 2019, 281, 204–211. [Google Scholar] [CrossRef]
- Mukasa, P.; Wakholi, C.; Mohammad, A.F.; Park, E.; Lee, J.; Suh, H.K.; Mo, C.; Lee, H.; Baek, I.; Kim, M.S.; et al. Determination of the viability of retinispora (Hinoki cypress) seeds using shortwave infrared hyperspectral imaging spectroscopy. J. Near Infrared Spectrosc. 2020, 28, 70–80. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Ivorra, E.; Girón, J.; Sánchez, A.J.; Verdú, S.; Barat, J.M.; Grau, R. Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images. J. Food Eng. 2013, 117, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Soares, S.F.C.; Gomes, A.A.; Araujo, M.C.U.; Galvão Filho, A.R.; Galvão, R.K.H. The successive projections algorithm. Trends Anal. Chem. 2013, 42, 84–98. [Google Scholar] [CrossRef]
- Helland, I.S. Some theoretical aspects of partial least squares regression. Chemom. Intell. Lab. Syst. 2001, 58, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Miaw, C.S.W.; Sena, M.M.; de Souza, S.V.C.; Callao, M.P.; Ruisanchez, I. Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies. Food Chem. 2018, 266, 254–261. [Google Scholar] [CrossRef]
- Min, M.; Lee, W.S.; Burks, T.F.; Jordan, J.D.; Schumann, A.W.; Schueller, J.K.; Xie, H. Design of a hyperspectral nitrogen sensing system for orange leaves. Comput. Electron. Agric. 2008, 63, 215–226. [Google Scholar] [CrossRef]
- Ge, Y.; Atefi, A.; Zhang, H.; Miao, C.; Ramamurthy, R.K.; Sigmon, B.; Yang, J.; Schnable, J.C. High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: A case study with a maize diversity panel. Plant Methods 2019, 15, 66. [Google Scholar] [CrossRef] [Green Version]
- Schweiger, A.K.; Cavender Bares, J.; Townsend, P.A.; Hobbie, S.E.; Madritch, M.D.; Wang, R.; Tilman, D.; Gamon, J.A. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2018, 2, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, F.; He, Y.; Gong, X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst. Eng. 2013, 115, 56–65. [Google Scholar] [CrossRef]
- Shenk, J.S. Application of NIR spectroscopy to agricultural products. In Handbook of Near-Infrared Analysis; CRC Press: Boca Raton, FL, USA, 1992; pp. 385–386. [Google Scholar]
Total | Correct | Accuracy (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BH | AR | AS | BH | AR | AS | BH | AR | AS | Overall | ||||
Vis/ NIR | BPV | Full | Cal * | 251 | 128 | 96 | 231 | 113 | 59 | 92.0 | 88.3 | 61.5 | 80.6 |
Val * | 126 | 64 | 48 | 110 | 57 | 22 | 87.3 | 89.1 | 45.8 | 74.1 | |||
Main | Cal | 251 | 128 | 96 | 229 | 113 | 57 | 91.2 | 88.3 | 59.4 | 79.6 | ||
Val | 126 | 64 | 48 | 108 | 57 | 24 | 85.7 | 89.1 | 50.0 | 74.9 | |||
SPRI | Full | Cal | 251 | 128 | 96 | 218 | 118 | 68 | 86.9 | 92.2 | 70.8 | 83.3 | |
Val | 126 | 64 | 48 | 105 | 58 | 27 | 83.3 | 90.6 | 56.3 | 76.7 | |||
Main | Cal | 251 | 128 | 96 | 230 | 115 | 60 | 91.6 | 89.8 | 62.5 | 81.3 | ||
Val | 126 | 64 | 48 | 117 | 58 | 26 | 92.9 | 90.6 | 54.2 | 79.2 | |||
SWIR | BPV | Full | Cal | 251 | 85 | 113 | 251 | 81 | 97 | 100.0 | 95.3 | 85.8 | 93.7 |
Val | 126 | 42 | 56 | 126 | 38 | 51 | 100.0 | 90.5 | 91.1 | 93.8 | |||
Main | Cal | 251 | 85 | 113 | 251 | 75 | 84 | 100.0 | 88.2 | 74.3 | 87.5 | ||
Val | 126 | 42 | 56 | 126 | 33 | 47 | 100.0 | 78.6 | 83.9 | 87.5 | |||
SPRI | Full | Cal | 251 | 85 | 113 | 250 | 85 | 113 | 99.6 | 100.0 | 100.0 | 99.9 | |
Val | 126 | 42 | 56 | 126 | 42 | 56 | 100.0 | 100.0 | 100.0 | 100.0 | |||
Main | Cal | 251 | 85 | 113 | 250 | 85 | 112 | 99.6 | 100.0 | 99.1 | 99.6 | ||
Val | 126 | 42 | 56 | 125 | 41 | 56 | 99.2 | 97.6 | 100.0 | 98.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.; Kim, Y.-S.; Omari, M.K.; Suh, H.-K.; Faqeerzada, M.A.; Kim, M.S.; Baek, I.; Cho, B.-K. High-Throughput Phenotyping Approach for the Evaluation of Heat Stress in Korean Ginseng (Panax ginseng Meyer) Using a Hyperspectral Reflectance Image. Sensors 2021, 21, 5634. https://doi.org/10.3390/s21165634
Park E, Kim Y-S, Omari MK, Suh H-K, Faqeerzada MA, Kim MS, Baek I, Cho B-K. High-Throughput Phenotyping Approach for the Evaluation of Heat Stress in Korean Ginseng (Panax ginseng Meyer) Using a Hyperspectral Reflectance Image. Sensors. 2021; 21(16):5634. https://doi.org/10.3390/s21165634
Chicago/Turabian StylePark, Eunsoo, Yun-Soo Kim, Mohammad Kamran Omari, Hyun-Kwon Suh, Mohammad Akbar Faqeerzada, Moon S. Kim, Insuck Baek, and Byoung-Kwan Cho. 2021. "High-Throughput Phenotyping Approach for the Evaluation of Heat Stress in Korean Ginseng (Panax ginseng Meyer) Using a Hyperspectral Reflectance Image" Sensors 21, no. 16: 5634. https://doi.org/10.3390/s21165634
APA StylePark, E., Kim, Y. -S., Omari, M. K., Suh, H. -K., Faqeerzada, M. A., Kim, M. S., Baek, I., & Cho, B. -K. (2021). High-Throughput Phenotyping Approach for the Evaluation of Heat Stress in Korean Ginseng (Panax ginseng Meyer) Using a Hyperspectral Reflectance Image. Sensors, 21(16), 5634. https://doi.org/10.3390/s21165634