Deep-Learning-Based Wi-Fi Indoor Positioning System Using Continuous CSI of Trajectories
Abstract
:1. Introduction
- Proposal of adopting continuous CSI captured along each trajectory instead of stationary RPs in a given indoor environment as a novel feature of creating a fingerprinting map for IPS.
- Hardware implementation of the entire IPS using DSPs as an emulator of Wi-Fi APs and mobile devices (MDs), and a GPU as a trainer for the 1DCNN-LSTM deep learning architecture.
- Performance analysis of a 1DCNN-LSTM deep learning architecture as a function of the filter size, number of layers, batch size, etc.
- Application of the GAN to enlarge the dataset such that a large amount of synthetic trajectory CSI can be generated to be added as input data of the 1DCNN-LSTM deep learning architecture without actually collecting the trajectory CSI, which consequently enhances the performance of the proposed IPS with limited dataset size.
2. System Model
2.1. Channel Analysis Using CSI
2.2. High-Level Design of IPS
3. Data Preparation
3.1. Conventional Data Collection Method
3.2. Proposed Data Collection Method
3.3. Predetermined Routes in the Experimental Environment
4. Hardware Implementation of the Proposed IPS
5. Deep Learning Solutions
5.1. One-Dimensional Convolutional Neural Network
5.2. 1DCNN-LSTM Architecture
5.3. Data Augmentation Using GAN
6. Experimental Results
6.1. Dataset of Trajectory CSI for Experiments
6.2. Impact of Convolutional Filter Dimension of 1DCNN
6.3. Impact of the Number of Segments T
6.4. Impact of the Number of Units in LSTM
6.5. Impact of the Batch Size
6.6. Impact of the Number of Trajectories
6.7. Performance Analysis on GAN
6.8. Performance Comparison with State-of-the-Art Methods
6.9. Performance Comparison with Different Spacing between RPs in Two Different Signal Environments
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batalla, J.M.; Mavromoustakis, C.X.; Mastorakis, G.; Xiong, N.N.; Wozniak, J. Adaptive Positioning Systems Based on Multiple Wireless Interfaces for Industrial IoT in Harsh Manufacturing Environments. IEEE J. Sel. Areas Commun. 2020, 38, 899–914. [Google Scholar] [CrossRef]
- Basiri, A.; Lohan, E.S.; Moore, T.; Winstanley, A.; Peltola, P.; Hill, C.; Amirian, P.; e Silva, P.F. Indoor location based services challenges, requirements and usability of current solutions. Comput. Sci. Rev. 2017, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; He, X.; Chen, X.; Fang, Y.; Fang, Q. Wi-Motion: A Robust Human Activity Recognition Using WiFi Signals. IEEE Access 2019, 7, 153287–153299. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, B.; Chen, H. A High Accuracy Time-Reversal Based WiFi Indoor Localization Approach with a Single Antenna. Sensors 2018, 18, 3437. [Google Scholar] [CrossRef] [Green Version]
- Nessa, A.; Adhikari, B.; Hussain, F.; Fernando, X.N. A Survey of Machine Learning for Indoor Positioning. IEEE Access 2020, 8, 214945–214965. [Google Scholar] [CrossRef]
- Khalajmehrabadi, A.; Gatsis, N.; Akopian, D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges. IEEE Commun. Surv. Tutor. 2017, 19, 1974–2002. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Lam, K.-Y.; Lee, V.C.; Nie, W.; Liu, K.; Li, H.; Xue, C.J. Data Rate Fingerprinting: A WLAN-Based Indoor Positioning Technique for Passive Localization. IEEE Sens. J. 2019, 19, 6517–6529. [Google Scholar] [CrossRef]
- Al-Qaness, M.A.A.; Li, F. WiGeR: WiFi-based gesture recognition system. Int. J. Geo-Inf. 2016, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, S.; Narui, H.; Dayal, S.; Ermon, S.; Valaee, S. A Survey on Behavior Recognition Using WiFi Channel State Information. IEEE Commun. Mag. 2017, 55, 98–104. [Google Scholar] [CrossRef]
- Ali, M.U.; Hur, S.; Park, Y. LOCALI: Calibration-Free Systematic Localization Approach for Indoor Positioning. Sensors 2017, 17, 1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput. Surv. 2013, 46, 25. [Google Scholar] [CrossRef]
- Wu, K.; Xiao, J.; Yi, Y.; Chen, D.; Luo, X.; Ni, L.M.-S. CSI-Based Indoor Localization. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 1300–1309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ding, E.; Hu, Y.; Liu, Y. A novel CSI-based fingerprinting for localization with a single AP. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 51. [Google Scholar] [CrossRef]
- Dang, X.; Tang, X.; Hao, Z.; Liu, Y. A Device-Free Indoor Localization Method Using CSI with Wi-Fi Signals. Sensors 2019, 19, 3233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Song, C.; Li, M.; Niu, Q. A CSI-Based Indoor Fingerprinting Localization with Model Integration Approach. Sensors 2019, 19, 2998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Trans. Veh. Technol. 2016, 66. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Inupakutika, D.; Mundlamuri, R.; Akopian, D. SDR-Fi: Deep-Learning-Based Indoor Positioning via Software-Defined Radio. IEEE Access 2019, 7, 145784–145797. [Google Scholar] [CrossRef]
- Shi, S.; Sigg, S.; Chen, L.; Ji, Y. Accurate Location Tracking from CSI-Based Passive Device-Free Probabilistic Fingerprinting. IEEE Trans. Veh. Technol. 2018, 67, 5217–5230. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-H.; Chen, J.-Y.; Nien, B.-H. Deep Learning-Based Indoor Localization Using Received Signal Strength and Channel State Information. IEEE Access 2019, 7, 33256–33267. [Google Scholar] [CrossRef]
- Wang, F.; Feng, J.; Zhao, Y.; Zhang, X.; Zhang, S.; Han, J. Joint Activity Recognition and Indoor Localization with WiFi Fingerprints. IEEE Access 2019, 7, 80058–80068. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Li, W.; Tao, X.; Zhang, P. ConFi: Convolutional neural networks based indoor Wi-Fi localization using channel state information. IEEE Access 2017, 5, 18066–18074. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, Z.; Zhang, Y.; Zhu, Y.; Lu, M.; Chen, A. Reducing fingerprint collection for indoor localization. Comput. Commun. 2016, 83, 56–63. [Google Scholar] [CrossRef]
- Pulkkinen, T.; Roos, T.; Myllymaki, P. Semi-supervised learning for wlan positioning. In Proceedings of the 21th International Conference on Artificial Neural Networks—Volume Part I, ser. ICANN’11, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 355–362. [Google Scholar]
- Liu, S.; Luo, H.; Zou, S. A Low-Cost and Accurate Indoor Localization Algorithm Using Label Propagation Based Semi-supervised Learning. In Proceedings of the 2009 Fifth International Conference on Mobile Ad-hoc and Sensor Networks, Fujian, China, 14–16 December 2009; pp. 108–111. [Google Scholar] [CrossRef]
- Sung, C.K.; De Hoog, F.; Chen, Z.; Cheng, P.; Popescu, D.C. Interference Mitigation Based on Bayesian Compressive Sensing for Wireless Localization Systems in Unlicensed Band. IEEE Trans. Veh. Technol. 2017, 66, 7038–7049. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specific Requirements; Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz; IEEE: New York, NY, USA, 2013. [Google Scholar]
- Texas Instruments. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip Data Manual. Available online: http://www.ti.com/lit/ds/symlink/tms320c6670.pdf (accessed on 31 March 2012).
- Ettus Resarch. USRP X310 Data Sheet. Available online: https://www.ettus.com/wp-content/uploads/2019/01/X300_X310_Spec_Sheet.pdf (accessed on 28 February 2014).
- Shao, W.; Luof, H.; Zhao, F.; Wang, C.; Crivello, A.; Tunio, M.Z. DePos: Accurate orientation-Free Indoor Positioning with Deep Convolutional Neural Networks. In Proceedings of the 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.-R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar] [CrossRef] [Green Version]
- Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 2018, 323, 203–213. [Google Scholar] [CrossRef]
- Hoang, M.T.; Yuen, B.; Ren, K.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. A CNN-LSTM Quantifier for Single Access Point CSI Indoor Localization. arXiv 2020, arXiv:2005.06394. [Google Scholar]
- Wu, Z.; Wang, X.; Jiang, Y.-G.; Ye, H.; Xue, X. Modeling Spatial-Temporal Clues in a Hybrid Deep Learning Framework for Video Classification. In Proceedings of the 23rd ACM International Conference on MULTIMEDIA, Brisbane, Australia, 26–30 October 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 461–470. [Google Scholar] [CrossRef] [Green Version]
- Hoang, M.T.; Yuen, B.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. Recurrent Neural Networks for Accurate RSSI Indoor Localization. IEEE Internet Things J. 2019, 6, 10639–10651. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Cao, Y.-J.; Jia, L.-L.; Chen, Y.-X.; Lin, N.; Yang, C.; Zhang, B.; Liu, Z.; Li, X.-X.; Dai, H.-H. Recent Advances of Generative Adversarial Networks in Computer Vision. IEEE Access 2018, 7, 14985–15006. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Smith, S.L.; Kindermans, P.-J.; Le, Q.V. Don’t decay the learning rate, increase the batch size. arXiv 2017, arXiv:1711.00489. [Google Scholar]
- Youssef, M.; Agrawala, A. The Horus WLAN location determi- nation system. In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, Seattle, WC, USA, 6–8 June 2005; Association for Computing Machinery: New York, NY, USA, 2005; pp. 205–218. [Google Scholar]
# of Convolutional Filters | Mean Error (m) | Std. Dev. (m) | Training Time (s) |
---|---|---|---|
16 (Single layer) | 1.94 | 1.24 | 113 |
32 (Single layer) | 1.85 | 1.43 | 110 |
64 (Single layer) | 1.74 | 1.14 | 121 |
128 (Single layer) | 2.24 | 1.18 | 143 |
256 (Single layer) | 2.91 | 1.86 | 172 |
32-16 (Double layer) | 1.83 | 1.17 | 118 |
64-32 (Double layer) | 1.35 | 0.90 | 134 |
64-32-16 (Triple layer) | 1.49 | 0.95 | 137 |
128-64 (Double layer) | 3.33 | 2.13 | 163 |
128-64-32 (Triple layer) | 1.36 | 0.71 | 174 |
128-64-32-16 (Quad. layer) | 1.39 | 0.82 | 178 |
256-128 (Double layer) | 2.47 | 1.58 | 235 |
256-128-64 (Triple layer) | 1.37 | 0.88 | 259 |
256-128-64-32 (Quad. layer) | 1.34 | 0.86 | 268 |
256-128-64-32-16 (Quint. layer) | 1.39 | 0.89 | 274 |
Configuration | Value |
---|---|
Training Data Size | 2000 [samples] × 56 [subcarriers] × 80 [# of measurements] |
Test Data Size | 2000 × 56 × 20 |
Conv Layer 1 | Input (2000 × 56 × 1), 3 × 3 kernels, 64 filters |
Conv Layer 2 | Input (2000 × 56 × 64), 3 × 3 kernels, 32 filters |
Fully Connected Layer | 16 neurons |
Training Output | Location |
Loss Function | MSE |
Optimizer | Adam |
Learning rate | 0.001 |
Configuration | Value |
---|---|
Loss function | MSE |
Fully connected Layer | 16 neurons |
Dropout | 0.2 |
Optimizer | Adam |
Learning rate | 0.001 |
# CSI Segments (T) | Mean Error (m) | Std. Dev. (m) |
---|---|---|
1 | 1.59 | 1.02 |
2 | 1.42 | 0.91 |
3 | 1.35 | 0.86 |
4 | 1.18 | 0.76 |
5 | 0.96 | 0.63 |
6 | 1.10 | 0.71 |
7 | 1.68 | 1.08 |
8 | 2.18 | 1.40 |
9 | 2.76 | 1.77 |
10 | 3.19 | 2.04 |
Real Data | 20% (16 Samples) | 100% (80 Samples) | |||
---|---|---|---|---|---|
Synthetic Data | Accuracy | Log Loss | Accuracy | Log Loss | |
0 | 71.2% | 1.43 | 93.3% | 0.13 | |
100 | 93.8% | 0.13 | 96.7% | 0.08 | |
200 | 95.0% | 0.11 | 97.4% | 0.07 | |
300 | 95.2% | 0.09 | 98.3% | 0.06 | |
400 | 95.1% | 0.09 | 98.2% | 0.06 |
Mean Error (m) | Std.Dev. (m) | 50th Pctl. (m) | 90th Pctl. (m) | |
---|---|---|---|---|
1DCNN-LSTM | 0.74 | 0.43 | 0.58 | 1.43 |
ConFi | 1.37 | 0.97 | 1.26 | 2.82 |
DeepFi | 1.42 | 1.02 | 1.43 | 3.79 |
Horus | 1.94 | 1.53 | 2.78 | 5.76 |
Experimental Environment | Laboratory | Corridor | |||
---|---|---|---|---|---|
Spacing (cm) | Mean Error (m) | Std. Dev. (m) | Mean Error (m) | Std. Dev. (m) | |
60 | 0.73 | 0.42 | 0.45 | 0.26 | |
80 | 0.74 | 0.43 | 0.44 | 0.25 | |
100 | 0.76 | 0.46 | 0.43 | 0.23 | |
120 | 0.74 | 0.43 | 0.47 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lee, M.; Choi, S. Deep-Learning-Based Wi-Fi Indoor Positioning System Using Continuous CSI of Trajectories. Sensors 2021, 21, 5776. https://doi.org/10.3390/s21175776
Zhang Z, Lee M, Choi S. Deep-Learning-Based Wi-Fi Indoor Positioning System Using Continuous CSI of Trajectories. Sensors. 2021; 21(17):5776. https://doi.org/10.3390/s21175776
Chicago/Turabian StyleZhang, Zhongfeng, Minjae Lee, and Seungwon Choi. 2021. "Deep-Learning-Based Wi-Fi Indoor Positioning System Using Continuous CSI of Trajectories" Sensors 21, no. 17: 5776. https://doi.org/10.3390/s21175776
APA StyleZhang, Z., Lee, M., & Choi, S. (2021). Deep-Learning-Based Wi-Fi Indoor Positioning System Using Continuous CSI of Trajectories. Sensors, 21(17), 5776. https://doi.org/10.3390/s21175776