A Novel Technique to Detect False Data Injection Attacks on Phasor Measurement Units
Abstract
:1. Introduction
- Most of the existing FDIAs assume DC model associated with RTUs. In RTU-based attacks, the adversaries need to compromise several RTUs, where PMU-based attacks compromising one PMU are sufficient for a successful attack. This paper addresses PMU-based FDIAs.
- This presents an effective approach for detecting FDIA attacks using PLV.
- The proposed approach requires no training to build a model, and can be used online to detect FDIAs.
2. State Estimation
3. Attack Model
3.1. RTU-Based Attack Models
3.2. PMU-Based Attack Model
4. Detection of FDIAs
Algorithm 1: PLV-based FDIA detection |
5. Simulation and Results
5.1. Performance Metrics
5.2. Case Studies
- Scenario I: In this scenario, the PMU located at bus 7 is attacked by the adversaries, and fifty Monte Carlo simulations are carried out. The attack vector a is kept constant for all fifty cases, however, the instant and duration of the attack are random.
- Scenario II: In this scenario, the attacked PMU is random, and fifty Monte Carlo simulations are carried out. The attack vector a is kept constant for all fifty cases, however, the instant and duration of the attack are random.
- Scenario III: In this scenario, the attack vector a changes randomly for each Monte Carlo simulation. The attacked PMU is chosen randomly, and the duration of the attack is random.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, G.; Weller, S.R.; Zhao, J.; Luo, F.; Dong, Z.Y. The 2015 Ukraine Blackout: Implications for False Data Injection Attacks. IEEE Trans. Power Syst. 2017, 32, 3317–3318. [Google Scholar] [CrossRef]
- Yuan, P.; Zhang, Q.; Zhang, T.; Chi, C.; Zhang, X.; Li, P.; Gong, X. Analysis and Enlightenment of the Blackouts in Argentina and New York. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 5879–5884. [Google Scholar] [CrossRef]
- Abur, A.; Exposito, A.G. Power System State Estimation: Theory And Implementation; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Liu, Y.; Ning, P.; Reiter, M.K. False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 2011, 14, 13. [Google Scholar] [CrossRef]
- LI, S.W.; Wu, F.; Zhang, J.; Zhu, C.Q. Selecting the Shortest One from Multi-Source and Multi-Channel Paths. J. Geomat. Sci. Tech. 2010, 5, 018. [Google Scholar]
- Teixeira, A.; Amin, S.; Sandberg, H.; Johansson, K.H.; Sastry, S.S. Cyber security analysis of state estimators in electric power systems. In Proceedings of the 2010 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5991–5998. [Google Scholar]
- Bi, S.; Zhang, Y.J. Defending mechanisms against false-data injection attacks in the power system state estimation. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 1162–1167. [Google Scholar]
- Bi, S.; Zhang, Y.J. Graphical methods for defense against false-data injection attacks on power system state estimation. IEEE Trans. Smart Grid 2014, 5, 1216–1227. [Google Scholar] [CrossRef]
- Wang, S.; Ren, W. Stealthy false data injection attacks against state estimation in power systems: Switching network topologies. In Proceedings of the 2014 American Control Conference (ACC), Portland, OR, USA, 4–6 June 2014; pp. 1572–1577. [Google Scholar]
- Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A review of false data injection attacks against modern power systems. IEEE Trans. Smart Grid 2017, 8, 1630–1638. [Google Scholar] [CrossRef]
- Rahman, M.A.; Mohsenian-Rad, H. False data injection attacks against nonlinear state estimation in smart power grids. In Proceedings of the Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Liu, X.; Li, Z.; Liu, X.; Li, Z. Masking transmission line outages via false data injection attacks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1592–1602. [Google Scholar] [CrossRef]
- Dehghani, M.; Ghiasi, M.; Niknam, T.; Kavousi-Fard, A.; Tajik, E.; Padmanaban, S.; Aliev, H. Cyber Attack Detection Based on Wavelet Singular Entropy in AC Smart Islands: False Data Injection Attack. IEEE Access 2021, 9, 16488–16507. [Google Scholar] [CrossRef]
- Guan, Y.; Ge, X. Distributed Attack Detection and Secure Estimation of Networked Cyber-Physical Systems Against False Data Injection Attacks and Jamming Attacks. IEEE Trans. Signal Inf. Process. Over Netw. 2018, 4, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, G.; Dong, Z.Y.; Wong, K.P. Forecasting-Aided Imperfect False Data Injection Attacks Against Power System Nonlinear State Estimation. IEEE Transactions on Smart Grid 2016, 7, 6–8. [Google Scholar] [CrossRef]
- Phadke, A.G.; Thorp, J.S. Synchronized Phasor Measurements and Their Applications; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Xie, J.; Meliopoulos, A.S. Sensitive detection of GPS spoofing attack in phasor measurement units via quasi-dynamic state estimation. Computer 2020, 53, 63–72. [Google Scholar] [CrossRef]
- Schmidt, E.; Gatsis, N.; Akopian, D. A GPS spoofing detection and classification correlator-based technique using the LASSO. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4224–4237. [Google Scholar] [CrossRef]
- Liu, L.; Esmalifalak, M.; Ding, Q.; Emesih, V.A.; Han, Z. Detecting false data injection attacks on power grid by sparse optimization. IEEE Trans. Smart Grid 2014, 5, 612–621. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, Z.; Sankar, L.; Kosut, O. False data injection attacks on phasor measurements that bypass low-rank decomposition. In Proceedings of the 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm), Dresden, Germany, 23–27 October 2017; pp. 96–101. [Google Scholar]
- Kim, T.T.; Poor, H.V. Strategic protection against data injection attacks on power grids. IEEE Trans. Smart Grid 2011, 2, 326–333. [Google Scholar] [CrossRef]
- Ding, W.; Xu, M.; Huang, Y.; Zhao, P.; Song, F. Cyber attacks on PMU placement in a smart grid: Characterization and optimization. Reliab. Eng. Syst. Saf. 2021, 212, 107586. [Google Scholar] [CrossRef]
- Bae, J. Cost-Effective Placement of Phasor Measurement Units to Defend against False Data Injection Attacks on Power Grid. Energies 2020, 13, 3862. [Google Scholar] [CrossRef]
- Ashok, A.; Govindarasu, M.; Ajjarapu, V. Online detection of stealthy false data injection attacks in power system state estimation. IEEE Trans. Smart Grid 2016, 9, 1636–1646. [Google Scholar] [CrossRef]
- Zhao, J.; Mili, L.; Wang, M. A generalized false data injection attacks against power system nonlinear state estimator and countermeasures. IEEE Trans. Power Systems 2018, 33, 4868–4877. [Google Scholar] [CrossRef]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.T.; Ghuman, A.S.; Huppert, T.J. Whole brain functional connectivity using phase locking measures of resting state magnetoencephalography. Front. Neurosci. 2014, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Yoshinaga, K.; Matsuhashi, M.; Mima, T.; Fukuyama, H.; Takahashi, R.; Hanakawa, T.; Ikeda, A. Comparison of Phase Synchronization Measures for Identifying Stimulus-Induced Functional Connectivity in Human Magnetoencephalographic and Simulated Data. Front. Neurosci. 2020, 14, 648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tong, Y.; Heng, X. Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access 2019, 7, 93711–93722. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhou, R.; He, Y.; Guo, X.M. Functional Integration and Separation of Brain Network Based on Phase Locking Value During Emotion Processing. IEEE Trans. Cogn. Dev. Syst. 2020. [Google Scholar] [CrossRef]
- Celka, P. Statistical Analysis of the Phase-Locking Value. IEEE Signal Process. Lett. 2007, 14, 577–580. [Google Scholar] [CrossRef]
- Göl, M.; Abur, A. A fast decoupled state estimator for systems measured by PMUs. IEEE Trans. Power Sys. 2015, 30, 2766–2771. [Google Scholar] [CrossRef]
- Almasabi, S.; Mitra, J. Multi-Stage Optimal PMU Placement Considering Substation Infrastructure. IEEE Trans. Ind. Appl. 2018, 54, 6519–6528. [Google Scholar] [CrossRef]
- Almasabi, S.; Mitra, J. A Fault-Tolerance Based Approach to Optimal PMU Placement. IEEE Trans. Smart Grid 2019. Accepted. [Google Scholar] [CrossRef]
- Khajeh, K.G.; Bashar, E.; Rad, A.M.; Gharehpetian, G.B. Integrated Model Considering Effects of Zero Injection Buses and Conventional Measurements on Optimal PMU Placement. IEEE Trans. Smart Grid 2017, 8, 1006–1013. [Google Scholar] [CrossRef]
Actual Class | Positive | Negative | |
---|---|---|---|
Predicted Class | |||
Positive | True Positive (TP) | False Negative (FN) | |
Negative | False Positive (FP) | True Negative (TN) |
Metric | Attack Vector | Attacked PMU | Acc (mean ± std) | Spec (mean ± std) | Sen (mean ± std) | F1-Score (mean ± std) | |
---|---|---|---|---|---|---|---|
Case | |||||||
Scenario I: | constant | 7 | 99.973 ± 0.1155 | 99.996 ± 0.0165 | 99.976 ± 0.1155 | 0.999 ± 0.0090 | |
Scenario II: | constant | random | 99.992 ± 0.0022 | 99.992 ± 0.0022 | 100 ± 0.0000 | 0.999 ± 0.0011 | |
Scenario III: | variable | random | 99.972 ± 0.0045 | 99.973 ± 0.0047 | 99.999 ± 0.0000 | 0.998 ± 0.0023 |
Case Number | Attacked PMU | Acc % | Spec % | Sen % | F1-Score |
---|---|---|---|---|---|
7 | 7 | 99.96806 | 99.96453 | 99.67929 | 0.99839 |
19 | 9 | 99.97685 | 99.97429 | 99.76812 | 0.99884 |
41 | 6 | 99.98101 | 99.97894 | 99.80815 | 0.99904 |
2 | 2 | 99.9686 | ≈100 | 99.96864 | 0.99984 |
Case Number | Attacked PMU | Acc % | Spec % | Sen % | F1-Score |
---|---|---|---|---|---|
1 | 1 | 99.98333 | 100 | 99.98177 | 0.99991 |
2 | 12 | 99.97685 | 100 | 99.97453 | 0.99987 |
3 | 2 | 99.98143 | 100 | 99.97958 | 0.99989 |
4 | 8 | 99.98380 | 100 | 99.98219 | 0.99991 |
5 | 10 | 99.97917 | 100 | 99.97705 | 0.99988 |
6 | 19 | 99.97731 | 100 | 99.80815 | 0.99988 |
7 | 24 | 99.98148 | 100 | 99.97970 | 0.99989 |
8 | 27 | 99.98333 | 100 | 99.98163 | 0.99991 |
9 | 11 | 99.98287 | 100 | 99.98106 | 0.99991 |
Metric | Attack Vector | Attacked PMU | Acc (mean ± std) | Spec (mean ± std) | Sen (mean ± std) | F1-Score (mean ± std) | |
---|---|---|---|---|---|---|---|
Case | |||||||
Scenario III: | variable | random | 99.9814 ± 0.0029 | 100 ± 0.000 | 99.9795 ± 0.0032 | 0.9897 ± 0.00160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almasabi, S.; Alsuwian, T.; Javed, E.; Irfan, M.; Jalalah, M.; Aljafari, B.; Harraz, F.A. A Novel Technique to Detect False Data Injection Attacks on Phasor Measurement Units. Sensors 2021, 21, 5791. https://doi.org/10.3390/s21175791
Almasabi S, Alsuwian T, Javed E, Irfan M, Jalalah M, Aljafari B, Harraz FA. A Novel Technique to Detect False Data Injection Attacks on Phasor Measurement Units. Sensors. 2021; 21(17):5791. https://doi.org/10.3390/s21175791
Chicago/Turabian StyleAlmasabi, Saleh, Turki Alsuwian, Ehtasham Javed, Muhammad Irfan, Mohammed Jalalah, Belqasem Aljafari, and Farid A. Harraz. 2021. "A Novel Technique to Detect False Data Injection Attacks on Phasor Measurement Units" Sensors 21, no. 17: 5791. https://doi.org/10.3390/s21175791
APA StyleAlmasabi, S., Alsuwian, T., Javed, E., Irfan, M., Jalalah, M., Aljafari, B., & Harraz, F. A. (2021). A Novel Technique to Detect False Data Injection Attacks on Phasor Measurement Units. Sensors, 21(17), 5791. https://doi.org/10.3390/s21175791