Geometric Algebra-Based ESPRIT Algorithm for DOA Estimation
Abstract
:1. Introduction
- We incorporate the multi-dimensional consistency of GA into ESPRIT, and propose a Geometric Algebra-based ESPRIT algorithm (GA-ESPRIT) for 2D-DOA estimation.
- We use the new calculation rules of the high-dimensional algebra system to preserve the correlation among multiple components of EMVS.
- Experimental results demonstrate that the proposed GA-ESPRIT algorithm can achieve more accurate, stable and lighter DOA estimation.
2. Preliminaries
2.1. Fundamental of Geometric Algebra
2.1.1. Geometric Product
2.1.2. Multi-Vector
2.2. The Geometric Algebra of Euclidean 3-Space
2.3. G-MODEL
3. Proposed Algorithm
3.1. Complex Representation Matrix and Related Calculations
3.2. Model for DPULAs
3.3. Algorithm Details
3.3.1. Subspace Separation
3.3.2. Rotation Invariance
3.3.3. Angle Estimation
- The original data received from three subarrays are integrated into the measurement model of the whole array according to (25);
- Calculate the covariance matrix , and then the ED in GA of is performed and the signal subspace can be obtained by the larger eigenvalues;
- According to (30), the signal subspace of the whole array is divided into three subspaces , and ;
- The ED of and is performed to obtain matrices and ;
3.4. Complexity Analysis
4. Simulation Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.L.; Gu, H.; Su, W.M. Angle estimation using ESPRIT without pairing in MIMO radar. Electron. Lett. 2008, 44, 1422–1423. [Google Scholar]
- Xu, B.Q.; Zhao, Y.B.; Cheng, Z.F.; Li, H. A novel unitary PARAFAC method for DOD and DOA estimation in bistatic MIMO radar. Signal Process. 2017, 138, 273–279. [Google Scholar] [CrossRef]
- Rzymowski, M.; Trzebiatowski, K.; Nyka, K.; Kulas, L. Doa estimation using reconfigurable antennas in millimiter-wave frequency 5G systems. In Proceedings of the 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS), Munich, Germany, 23–26 June 2019; pp. 1–4. [Google Scholar]
- Saucan, A.; Chonavel, T.; Sintes, C.; Le Caillec, J. CPHD-DOA tracking of multiple extended sonar targets in impulsive environments. IEEE Trans. Signal Process. 2016, 64, 1147–1160. [Google Scholar] [CrossRef] [Green Version]
- Nehorai, A.; Paldi, E. Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 1994, 42, 376–398. [Google Scholar] [CrossRef]
- Li, J. Direction and polarization estimation using arrays with small loops and short dipoles. IEEE Trans. Antennas Propag. 1993, 41, 379–387. [Google Scholar] [CrossRef]
- Guo, X.; Wan, Q.; Chang, C.; Lam, E.Y. Source localization using a sparse representation framework to achieve superresolution. Multidimens. Syst. Signal Process. 2010, 21, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Miron, S.; Bihan, N.L.; Mars, J.I. Vector-sensor MUSIC for polarized seismic sources localization. Eurasip J. Adv. Signal Process. 2005, 2005, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.S.; Yan, B.; Wu, Z.D.; Li, X. Two-dimensional DOA estimation by seismic sensor in shallow water multi-path environment. J. Electron. Inf. Technol. 2014, 36, 988–992. [Google Scholar]
- Yuan, Q.W.; Chen, Q.; Sawaya, K. MUSIC based DOA finding and polarization estimation using USV with polarization sensitive array antenna. In Proceedings of the IEEE Radio and WirelessSymposium, San Diego, CA, USA, 17–19 October 2006; pp. 339–342. [Google Scholar]
- Weiss, A.J.; Friedlander, B. Direction finding for diversely polarized signals using polynomial rooting. IEEE Trans. Signal Process. 1993, 41, 1893–1905. [Google Scholar] [CrossRef]
- Kailath, T.; Paulraj, A.; Roy, R. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Gao, F.; Gershman, A.B. A generalized ESPRIT approach to direction-of-arrival estimation. IEEE Signal Process. Lett. 2005, 12, 254–257. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P.; Zheng, D.M. Efficient direction and polarization estimation with a COLD array. IEEE Trans. Antennas Propag. 1996, 44, 539–547. [Google Scholar]
- Li, J.; Stoica, P. Efficient parameter estimation of partially polarized electromagnetic waves. IEEE Trans. Signal Process. 1994, 42, 3114–3125. [Google Scholar]
- Wong, K.T.; Yuan, X. “Vector cross-product direction-finding” with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles/loops. IEEE Trans. Signal Process. 2011, 59, 160–171. [Google Scholar] [CrossRef]
- Luo, F.; Yuan, X. Enhanced “vector-cross-product” direction-finding using a constrained sparse triangular-array. Eurasip J. Adv. Signal Process. 2012, 2012, 115. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.M. A novel spatially spread electromagnetic vector sensor for high-accuracy 2-D DOA estimation. Multidimens. Syst. Signal Process. 2015, 28, 23–48. [Google Scholar] [CrossRef]
- Meng, T.Z.; Wu, M.J.; Yuan, N.C. DOA estimation for conformal vector-sensor array using geometric algebra. Eurasip J. Adv. Signal Process. 2017, 2017, 64. [Google Scholar] [CrossRef]
- Jiang, J.F.; Zhang, J.Q. Geometric algebra of euclidean 3-Space for electromagnetic vector-sensor array processing, part I: Modeling. IEEE Trans. Antennas Propag. 2011, 58, 3961–3973. [Google Scholar] [CrossRef]
- Miron, S.; Bihan, N.L.; Mars, J.I. Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process. 2006, 54, 1218–1229. [Google Scholar] [CrossRef]
- Zhao, J.C.; Tao, H.H. Quaternion based joint DOA and polarization parameters estimation with stretched three-component electromagnetic vector sensor array. J. Syst. Eng. Electron. 2017, 28, 1–9. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Liu, W. Augmented Quaternion ESPRIT-Type DOA Estimation With a Crossed-Dipole Array. IEEE Commun. Lett. 2020, 24, 548–552. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.Q.; Hu, B.; Zhou, H.; Zeng, X.Y. A novel 2-D quaternion ESPRIT for joint DOA and polarization estimation with crossed-dipole arrays. In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 1038–1043. [Google Scholar]
- Gou, X.M.; Liu, Z.W.; Xu, Y.G. Biquaternion cumulant-MUSIC for DOA estimation of noncircular signals. Signal Process. 2013, 93, 874–881. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Z.; Xu, Y. Quad-Quaternion MUSIC for DOA estimation using electromagnetic vector sensors. Eurasip J. Adv. Signal Process. 2008, 2008, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.K.; Zou, L.; Xu, B.G.; Tang, S.L.; Wan, Y.H.; Liu, Y.L. Direction and polarization estimation with modified quad-quaternion music for vector sensor arrays. In Proceedings of the 2014 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 19–23 October 2014; pp. 352–357. [Google Scholar]
- Ko, C.; Lee, J. Performance of ESPRIT and Root-MUSIC for angle-of-arrival(AOA) Estimation. In Proceedings of the 2018 IEEE World Symposium on Communication Engineering (WSCE), Singapore, 28–30 December 2018; pp. 49–53. [Google Scholar]
- David, H. New Foundations for Classical Mechanics; D. Reidel Publishing Company: Boston, MA, USA; Kluwer: Alfen am Rhein, The Netherlands, 1986; pp. 10–34. [Google Scholar]
- Arthur, J.W. Understanding geometric algebra for electromagnetic theory. IEEE Antennas Propag. Mag. 2011, 56, 292. [Google Scholar] [CrossRef]
- Lasenby, A.N. Grassmann, geometric algebra and cosmology. Ann. Phys. 2010, 19, 161–176. [Google Scholar] [CrossRef]
- Jorge, R.R.; Eduardo, B.C. Medical image segmentation, volume representation and registration using spheres in the geometric algebra framework. Pattern Recognit. 2007, 40, 171–188. [Google Scholar] [CrossRef]
- Shen, M.; Wang, R.; Cao, W. Joint sparse representation model for multi-channel image based on reduced geometric algebra. IEEE Access 2018, 6, 24213–24223. [Google Scholar] [CrossRef]
- Cao, W.M.; Lyu, F.F.; He, Z.H.; Cao, G.T.; He, Z.Q. Multi-modal medical image registration based on feature spheres in geometric algebra. IEEE Access 2018, 6, 21164–21172. [Google Scholar] [CrossRef]
- Xia, T.; Zheng, Y.; Wan, Q.; Wang, X.; Roy, R. Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays. IEEE Trans. Antennas Propag. 2007, 55, 2627–2632. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, G.; Teng, Y. 2D DOA estimator for multiple coherently distributed sources using modified propagator. Circuits Syst. Signal Process. 2012, 31, 255–270. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Chen, W.; Tong, H. Reduced-dimensional ESPRIT for direction finding in monostatic MIMO radar with double parallel uniform linear arrays. Wirel. Pers. Commun. 2014, 77, 1–19. [Google Scholar] [CrossRef]
- Roy, R.; Paulraj, A.; Kailath, T. ESPRIT—A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Wang, Y.L. Theory and Algorithm of Spatial Spectrum Estimation; Tsinghua University Press: Beijing, China, 2004; pp. 186–191. [Google Scholar]
- Kintz, A.L.; Gupta, I.J. A modified MUSIC algorithm for direction of arrival estimation in the presence of antenna array manifold mismatch. IEEE Trans. Antennas Propag. 2016, 64, 4836–4847. [Google Scholar] [CrossRef]
- He, X.; Zhang, Z.; Wang, W. DOA estimation with uniform rectangular array in the presence of mutual coupling. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 1854–1859. [Google Scholar]
- Lu, R.; Zhang, M.; Liu, X.; Chen, X.; Zhang, A. Direction-of-arrival estimation via coarray with model errors. IEEE Access 2018, 6, 56514–56525. [Google Scholar] [CrossRef]
1 | ||||||||
1 | 1 | |||||||
1 | ||||||||
1 | − | − | − | |||||
− | − | 1 | − | − | ||||
− | −1 | − | − | |||||
− | − | − | −1 | − | ||||
− | − | − | −1 | |||||
− | − | − | −1 |
Method | Time Complexity | Space Complexity | |||
---|---|---|---|---|---|
CM | ED | CM (R) | Eigenvalue (R) | Eigenvectors (R) | |
LV-ESPRIT | 72 | 6M | 36 | ||
GA-ESPRIT | 8 | 2M | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, Y.; Li, Y.; Cao, W.; Yan, Y. Geometric Algebra-Based ESPRIT Algorithm for DOA Estimation. Sensors 2021, 21, 5933. https://doi.org/10.3390/s21175933
Wang R, Wang Y, Li Y, Cao W, Yan Y. Geometric Algebra-Based ESPRIT Algorithm for DOA Estimation. Sensors. 2021; 21(17):5933. https://doi.org/10.3390/s21175933
Chicago/Turabian StyleWang, Rui, Yue Wang, Yanping Li, Wenming Cao, and Yi Yan. 2021. "Geometric Algebra-Based ESPRIT Algorithm for DOA Estimation" Sensors 21, no. 17: 5933. https://doi.org/10.3390/s21175933
APA StyleWang, R., Wang, Y., Li, Y., Cao, W., & Yan, Y. (2021). Geometric Algebra-Based ESPRIT Algorithm for DOA Estimation. Sensors, 21(17), 5933. https://doi.org/10.3390/s21175933