Day-to-Day Variability and Year-to-Year Reproducibility of Accelerometer-Measured Free-Living Sit-to-Stand Transitions Volume and Intensity among Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.3. Accelerometry Outcomes
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schenkman, M.; Berger, R.A.; Riley, P.O.; Mann, R.W.; Hodge, W.A. Whole-Body Movements During Rising to Standing from Sitting. Phys. Ther. 1990, 70, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.; Ferrucci, L.; Simonsick, E.; Salive, M.; Wallace, R. Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. N. Engl. J. Med. 1995, 332, 556–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storm, F.A.; Buckley, C.J.; Mazzà, C. Gait Event Detection in Laboratory and Real Life Settings: Accuracy of Ankle and Waist Sensor Based Methods. Gait Posture 2016, 50, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Burton, E.; Hill, K.D.; Lautenschlager, N.T.; Thøgersen-Ntoumani, C.; Lewin, G.; Boyle, E.; Howie, E. Reliability and Validity of Two Fitness Tracker Devices in the Laboratory and Home Environment for Older Community-Dwelling People. BMC Geriatr. 2018, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, E.; Bock, O.; Mellone, S.; Zijlstra, W. Mobility in Old Age: Capacity Is Not Performance. Biomed Res. Int. 2016, 2016, 3261567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, D.L.; Neiva, H.P.; Pires, I.M.; Zdravevski, E.; Mihajlov, M.; Garcia, N.M.; Ruiz-Cárdenas, J.D.; Marinho, D.A.; Marques, M.C. An Experimental Study on the Validity and Reliability of a Smartphone Application to Acquire Temporal Variables during the Single Sit-to-Stand Test with Older Adults. Sensors 2021, 21, 2650. [Google Scholar] [CrossRef] [PubMed]
- Marques, D.L.; Neiva, H.P.; Pires, I.M.; Marinho, D.A.; Marques, M.C. Accelerometer Data from the Performance of Sit-to-Stand Test by Elderly People. Data Br. 2020, 33, 106328. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, M.C.; Van Der Slikke, R.M.A.; Keijsers, N.L.W.; Van Lummel, R.C.; De Waal Malefijt, M.C.; Verdonschot, N. The Accuracy of Measuring the Kinematics of Rising from a Chair with Accelerometers and Gyroscopes. J. Biomech. 2006, 39, 354–358. [Google Scholar] [CrossRef]
- Van Lummel, R.C.; Ainsworth, E.; Lindemann, U.; Zijlstra, W.; Chiari, L.; Van Campen, P.; Hausdorff, J.M. Automated Approach for Quantifying the Repeated Sit-to-Stand Using One Body Fixed Sensor in Young and Older Adults. Gait Posture 2013, 38, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, A.; Mancini, M.; Lindemann, U.; Chiari, L.; Zijlstra, W. Sit-Stand and Stand-Sit Transitions in Older Adults and Patients with Parkinson’s Disease: Event Detection Based on Motion Sensors versus Force Plates. J. Neuroeng. Rehabil. 2012, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Hernandez, U.; Dehghani-Sanij, A.A. Probabilistic Identification of Sit-to-Stand and Stand-to-Sit with a Wearable Sensor. Pattern Recognit. Lett. 2019, 118, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Walgaard, S.; Faber, G.S.; van Lummel, R.C.; van Dieën, J.H.; Kingma, I. The Validity of Assessing Temporal Events, Sub-Phases and Trunk Kinematics of the Sit-to-Walk Movement in Older Adults Using a Single Inertial Sensor. J. Biomech. 2016, 49, 1933–1937. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, W.; Bisseling, R.W.; Schlumbohm, S.; Baldus, H. A Body-Fixed-Sensor-Based Analysis of Power during Sit-to-Stand Movements. Gait Posture 2010, 31, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Grimm, B.; Bolink, S. Evaluating Physical Function and Activity in the Elderly Patient Using Wearable Motion Sensors. EFORT Open Rev. 2016, 1, 112–120. [Google Scholar] [CrossRef]
- Schrack, J.A.; Cooper, R.; Koster, A.; Shiroma, E.J.; Murabito, J.M.; Rejeski, W.J.; Ferrucci, L.; Harris, T.B. Assessing Daily Physical Activity in Older Adults: Unraveling the Complexity of Monitors, Measures, and Methods. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2016, 71, 1039–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowley, P.; Skotte, J.; Stamatakis, E.; Hamer, M.; Aadahl, M.; Stevens, M.L.; Rangul, V.; Mork, P.J.; Holtermann, A. Comparison of Physical Behavior Estimates from Three Different Thigh-Worn Accelerometers Brands: A Proof-of-Concept for the Prospective Physical Activity, Sitting, and Sleep Consortium (ProPASS). Int. J. Behav. Nutr. Phys. Act. 2019, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Skotte, J.; Korshøj, M.; Kristiansen, J.; Hanisch, C.; Holtermann, A. Detection of Physical Activity Types Using Triaxial Accelerometers. J. Phys. Act. Health 2014, 11, 76–84. [Google Scholar] [CrossRef]
- Bohannon, R.W. Daily Sit-to-Stands Performed by Adults: A Systematic Review. J. Phys. Ther. Sci. 2015, 27, 939–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumukadas, D.; Laidlaw, S.; Witham, M.D. Using the RT3 Accelerometer to Measure Everyday Activity in Functionally Impaired Older People. Aging Clin. Exp. Res. 2008, 20, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Pickford, C.G.; Findlow, A.H.; Kerr, A.; Banger, M.; Clarke-Cornwell, A.M.; Hollands, K.L.; Quinn, T.; Granat, M.H. Quantifying Sit-to-Stand and Stand-to-Sit Transitions in Free-Living Environments Using the ActivPAL Thigh-Worn Activity Monitor. Gait Posture 2019, 73, 140–146. [Google Scholar] [CrossRef]
- Hutcheon, J.A.; Chiolero, A.; Hanley, J.A. Random Measurement Error and Regression Dilution Bias. BMJ 2010, 340, 1402–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keadle, S.K.; Shiroma, E.J.; Kamada, M.; Matthews, C.E.; Harris, T.B.; Lee, I.M. Reproducibility of Accelerometer-Assessed Physical Activity and Sedentary Time. Am. J. Prev. Med. 2017, 52, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Aadland, E.; Andersen, L.B.; Ekelund, U.; Anderssen, S.A.; Resaland, G.K. Reproducibility of Domain-Specific Physical Activity over Two Seasons in Children. BMC Public Health 2018, 18, 821. [Google Scholar] [CrossRef] [Green Version]
- Hinckson, E.A.; Hopkins, W.G.; Aminian, S.; Ross, K. Week-to-Week Differences of Children’s Habitual Activity and Postural Allocation as Measured by the ActivPAL Monitor. Gait Posture 2013, 38, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, A.; Baumann, S.; Voigt, L.; John, U.; Ulbricht, S. Measurement Reactivity of Accelerometer-Based Sedentary Behavior and Physical Activity in 2 Assessment Periods. J. Phys. Act. Health 2021, 18, 185–191. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Sampson, J.N.; Keadle, S.K.; Willis, E.A.; Troiano, R.P.; Matthews, C.E. Reproducibility of Accelerometer and Posture-Derived Measures of Physical Activity. Med. Sci. Sports Exerc. 2020, 52, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Alothman, S.; Hoover, J.C.; Alshehri, M.M.; Alenazi, A.M.; Wick, J.; LeMaster, J.; Rucker, J.; Kluding, P.M. Test-Retest Reliability of ActivPAL in Measuring Sedentary Behavior and Physical Activity in People with Type 2 Diabetes. J. Phys. Act. Health 2020, 17, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Abel, B.; Pomiersky, R.; Werner, C.; Lacroix, A.; Schäufele, M.; Hauer, K. Day-to-Day Variability of Multiple Sensor-Based Physical Activity Parameters in Older Persons with Dementia. Arch. Gerontol. Geriatr. 2019, 85, 103911. [Google Scholar] [CrossRef]
- Rantanen, T.; Pynnönen, K.; Saajanaho, M.; Siltanen, S.; Karavirta, L.; Kokko, K.; Karvonen, A.; Kauppinen, M.; Rantalainen, T.; Rantakokko, M.; et al. Individualized Counselling for Active Aging: Protocol of a Single-Blinded, Randomized Controlled Trial among Older People (the AGNES Intervention Study). BMC Geriatr. 2019, 19, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T.; Saajanaho, M.; Karavirta, L.; Siltanen, S.; Rantakokko, M.; Viljanen, A.; Rantalainen, T.; Pynnönen, K.; Karvonen, A.; Lisko, I.; et al. Active Aging—Resilience and External Support as Modifiers of the Disablement Outcome: AGNES Cohort Study Protocol. BMC Public Health 2018, 18, 565. [Google Scholar] [CrossRef]
- Siltanen, S.; Portegijs, E.; Pynnönen, K.; Hassandra, M.; Rantalainen, T.; Karavirta, L.; Saajanaho, M.J.; Rantanen, T. Effects of an Individualized Active Aging Counseling Intervention on Mobility and Physical Activity: Secondary Analyses of a Randomized Controlled Trial. J. Aging Health 2020, 32, 1316–1324. [Google Scholar] [CrossRef]
- Dipietro, L.; Caspersen, C.J.; Ostfeld, A.M.; Nadel, E.R. A Survey for Assessing Physical Activity among Older Adults. Med. Sci. Sports Exerc. 1993, 25, 628–642. [Google Scholar] [CrossRef]
- Guralnik, J.; Ferrucci, L.; Pieper, C.; Leveille, S.; Markides, K.; Ostir, G.; Studenski, S.; Berkman, L.; Wallace, R. Lower Extremity Function and Subsequent Disability: Consistency across Studies, Predictive Models, and Value of Gait Speed Alone Compared with the Short Physical Performance Battery. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2000, 55, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guralnik, J.; Simonsick, E.; Ferrucci, L.; Glynn, R.; Berkman, L.; Blazer, D.; Scherr, P.; Wallace, R. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T.; Volpato, S.; Ferrucci, L.; Heikkinen, E.; Fried, L.P.; Guralnik, J.M. Handgrip Strength and Cause-Specific and Total Mortality in Older Disabled Women: Exploring the Mechanism. J. Am. Geriatr. Soc. 2003, 51, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Mänttäri, A.; Vuorimaa, T.; Suni, J.; Sievänen, H. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD). PLoS ONE 2015, 10, e0134813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vähä-Ypyä, H.; Husu, P.; Suni, J.; Vasankari, T.; Sievänen, H. Reliable Recognition of Lying, Sitting, and Standing with a Hip-Worn Accelerometer. Scand. J. Med. Sci. Sport. 2018, 28, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
- Rowlands, A.V. Moving Forward with Accelerometer-Assessed Physical Activity: Two Strategies to Ensure Meaningful, Interpretable, and Comparable Measures. Pediatr. Exerc. Sci. 2018, 30, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Karavirta, L.; Rantalainen, T.; Skantz, H.; Lisko, I.; Portegijs, E.; Rantanen, T. Individual Scaling of Accelerometry to Preferred Walking Speed in the Assessment of Physical Activity in Older Adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2020, 75, e111–e118. [Google Scholar] [CrossRef]
- Martin Bland, J.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 13 June 2021).
- Schwenk, M.; Gogulla, S.; Englert, S.; Czempik, A.; Hauer, K. Test-Retest Reliability and Minimal Detectable Change of Repeated Sit-to-Stand Analysis Using One Body Fixed Sensor in Geriatric Patients. Physiol. Meas. 2012, 33, 1931–1946. [Google Scholar] [CrossRef]
- Regterschot, G.R.H.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Test-Retest Reliability of Sensor-Based Sit-to-Stand Measures in Young and Older Adults. Gait Posture 2014, 40, 220–224. [Google Scholar] [CrossRef]
- Van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; Da Silva, I.C.M.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of Accelerometer Data for Free-Living Physical Activity Assessment Using Local Gravity and Temperature: An Evaluation on Four Continents. J. Appl. Physiol. 2014, 117, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcock, L.; O’Brien, T.D.; Vanicek, N. Age-Related Changes in Physical Functioning: Correlates between Objective and Self-Reported Outcomes. Physiotherapy 2015, 101, 204–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, S.K.; Pereira, X.H.M.; Keenan, K.G. The Aging Neuromuscular System and Motor Performance. J. Appl. Physiol. 2016, 121, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E.S.L.; Danquah, I.H.; Petersen, C.B.; Tolstrup, J.S. Intra-Individual Variability in Day-to-Day and Month-to-Month Measurements of Physical Activity and Sedentary Behaviour at Work and in Leisure-Time among Danish Adults. BMC Public Health 2016, 16, 1222. [Google Scholar] [CrossRef] [Green Version]
Baseline | Follow-Up | p-Value 1 | |
---|---|---|---|
Age [year] | 76.5 (±1.9) | ||
Weight [kg] | 73.7 (±14.0) | ||
Height [m] | 164.6 (±9.8) | ||
MMSE [points] | 28.2 (±1.3) | ||
YPAS [points] | 57.7 (±21.0) | 66.6 (±24.6) | 0.001 |
Life-space mobility [points] | 74.2 (±10.3) | 75.3 (±14.1) | 0.515 |
Hand grip force [kg] | 35.3 (±11.3) | 36.7 (±12.7) | 0.570 |
5x STS test time [s] | 11.9 (±2.9) | 10.3 (±3.0) | <0.001 |
SPPB overall points [points] | 10.7 (±1.4) | 11.3 (±1.0) | <0.001 |
MAD 24 h [mG] | 25.1 (±8.1) | 24.8 (±8.8) | 0.835 |
MVPA [min/d] | 34.4 (±24.7) | 33.7 (±25.8) | 0.567 |
Baseline Mean (SD) | Follow-Up Mean (SD) | p-Value 1 | ICC | ICC 95% ci | |
---|---|---|---|---|---|
Number of STS [no/d] | 44.2 (±15.9) | 44.5 (±15.2) | 0.931 | 0.79 *** | 0.70–0.86 |
Mean angular velocity [deg/s] | 56.9 (±8.0) | 56.6 (±8.0) | 0.587 | 0.81 *** | 0.72–0.87 |
Maximal angular velocity [deg/s] | 111.6 (±22.0) | 107.3 (±19.7) | 0.017 | 0.73 *** | 0.61–0.82 |
MAD 24 h [mg] | 25.1 (±8.1) | 24.8 (±8.8) | 0.835 | 0.89 *** | 0.84–0.93 |
MVPA [min/d] | 34.4 (±24.7) | 33.7 (±25.8) | 0.567 | 0.85 *** | 0.79–0.90 |
Mean (SD) | Number of STS (no/day) | Mean Angular Velocity (deg/s) |
---|---|---|
day 1 (n = 85) | 45.5 (±17.7) | 56.2 (±8.1) |
day 2 (n = 86) | 44.4 (±16.1) | 55.5 (±8.3) |
day 3 (n = 86) | 44.4 (±20.0) | 57.2 (±7.9) |
day 4 (n = 83) | 43.4 (±17.4) | 56.4 (±9.2) |
day 5 (n = 81) | 45.9 (±18.2) | 56.8 (±8.6) |
ICC (95% ci) *** | ||
day 1–day 2 (n = 85) | 0.63 [0.49, 0.74] | 0.79 [0.69, 0.86] |
day 2–day 3 (n = 86) | 0.72 [0.60, 0.81] | 0.78 [0.68, 0.86] |
day 3–day 4 (n = 83) | 0.64 [0.50, 0.75] | 0.75 [0.64, 0.83] |
day 4–day 5 (n = 81) | 0.71 [0.58, 0.80] | 0.80 [0.71, 0.87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Löppönen, A.; Karavirta, L.; Portegijs, E.; Koivunen, K.; Rantanen, T.; Finni, T.; Delecluse, C.; Roie, E.V.; Rantalainen, T. Day-to-Day Variability and Year-to-Year Reproducibility of Accelerometer-Measured Free-Living Sit-to-Stand Transitions Volume and Intensity among Community-Dwelling Older Adults. Sensors 2021, 21, 6068. https://doi.org/10.3390/s21186068
Löppönen A, Karavirta L, Portegijs E, Koivunen K, Rantanen T, Finni T, Delecluse C, Roie EV, Rantalainen T. Day-to-Day Variability and Year-to-Year Reproducibility of Accelerometer-Measured Free-Living Sit-to-Stand Transitions Volume and Intensity among Community-Dwelling Older Adults. Sensors. 2021; 21(18):6068. https://doi.org/10.3390/s21186068
Chicago/Turabian StyleLöppönen, Antti, Laura Karavirta, Erja Portegijs, Kaisa Koivunen, Taina Rantanen, Taija Finni, Christophe Delecluse, Evelien Van Roie, and Timo Rantalainen. 2021. "Day-to-Day Variability and Year-to-Year Reproducibility of Accelerometer-Measured Free-Living Sit-to-Stand Transitions Volume and Intensity among Community-Dwelling Older Adults" Sensors 21, no. 18: 6068. https://doi.org/10.3390/s21186068
APA StyleLöppönen, A., Karavirta, L., Portegijs, E., Koivunen, K., Rantanen, T., Finni, T., Delecluse, C., Roie, E. V., & Rantalainen, T. (2021). Day-to-Day Variability and Year-to-Year Reproducibility of Accelerometer-Measured Free-Living Sit-to-Stand Transitions Volume and Intensity among Community-Dwelling Older Adults. Sensors, 21(18), 6068. https://doi.org/10.3390/s21186068