Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable
Abstract
:1. Introduction
2. Possible Approximations of Stable Setpoint Step Responses
2.1. Input Filter Design
2.2. Measuring Input-Output Steady-State Characteristic
2.3. Approximation of Stable Step Responses According to Ziegler and Nichols
- The fundamental weakness of both solutions with the model parameterization as shown in Figure 3 is the drawing of the tangent line through the inflection point. This was relatively easy to do with a traditional manual (graphical) solution. However, with numerical solutions, this is one of the most ill-conditioned tasks.
- The second weakness is the instability of the steady states in the system, which are sensitive to various disturbances from the environment. An example of such a step response is shown in Figure 4. The long measurement times can lead to large fluctuations in the process step response due to disturbances. The requirement for a steady-state measurement without disturbances can be a significant limitation in many applications.
- The third weakness is related to the fact that the obtained models (8) and (6) represent only linear, i.e., local models, which can no longer be sufficiently accurate when a larger range of operating points is applied due to the nonlinearity of the process. Therefore, it is meaningless to require “infinite” measurements to reach the steady state.
2.4. Local Identification of Local Linear Models
3. PI and PID Controller Tuning by the MRDP Method
3.1. 2DOF PI and PID Controllers
3.2. Optimal PI Tuning by TRDP Method
3.3. Calculation of the Optimal Parallel PID Parameters
3.4. Calculation of Optimal Series PID Parameters
3.5. Prefilter Calculation
4. Time and Shape-Related Performance Measures
5. Illustrative Example
5.1. Specifying the Local and Ultralocal Linear Process Approximations
5.2. Experimenting with PI Control
5.3. Experimentation with PID Control
6. Discussion
6.1. Step-Response-Based Plant Modeling
6.2. Two Options in PID Parametrization
6.3. Final Recommendations
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1P | One Pulse, response with 2 monotonic segments (1 extreme point) |
ADRC | Active Disturbance Rejection Control |
ART | Average Residence Time |
DC | Direct Current |
IAE | Integral Absolute Error |
IPDT | Integrator Plus Dead-Time |
IOSSCH | Input-Output Steady-State Characteristic |
MRDP | Multiple Real Dominant Pole |
PID | Proportional-Integrative-Derivative |
QRDP | Quadruple Real Dominant Pole |
TV | Total Variation |
TV | Deviation from monotonicity (0P shape) |
TV | Deviation from 1P shape |
TRDP | Triple Real Dominant Pole |
References
- Åström, K.J.; Hägglund, T. Advanced PID Control; ISA, Research Triangle Park: Durham, NC, USA, 2006. [Google Scholar]
- Huba, M.; Vrančić, D.; Bisták, P. PID Control with Higher Order Derivative Degrees for IPDT Plant Models. IEEE Access 2021, 9, 2478–2495. [Google Scholar] [CrossRef]
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. ASME 1942, 64, 759–768. [Google Scholar] [CrossRef]
- Cohen, G.; Coon, G. Theoretical investigation of retarded control. Trans. ASME 1953, 75, 827–834. [Google Scholar]
- Hang, C.; Åström, K.; Ho, W. Refinements of the Ziegler Nichols tuning formula. IEEE Proc. D 1991, 138, 111–118. [Google Scholar] [CrossRef]
- Žáková, K.; Huba, M. Theoretical Analysis of Ziegler-Nichols Conclusions. IFAC Proc. Vol. 1997, 30, 195–200. [Google Scholar] [CrossRef]
- Huba, M.; Žáková, K. Contribution to the Theoretical Analysis of the Ziegler-Nichols Method. J. Electr. Eng. 2003, 54, 188–194. [Google Scholar]
- Hägglund, T.; Aström, K.J. Revisiting the Ziegler-Nichols Tuning Rules for PI Control. Asian J. Contr. 2002, 4, 364–380. [Google Scholar] [CrossRef]
- Åström, K.J.; Hägglund, T. Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 2004, 14, 635–650. [Google Scholar] [CrossRef]
- Šekara, T.B.; Mataušek, M.R. Revisiting the Ziegler-Nichols process dynamics characterization. J. Process Control 2010, 20, 360–363. [Google Scholar] [CrossRef]
- Brito, A.G. On the misunderstanding of the Ziegler-Nichols’s formulae usage. IEEE/CAA J. Autom. Sin. 2019, 6, 142–147. [Google Scholar] [CrossRef]
- Takahashi, Y.; Chan, C.; Auslander, D. Parametereinstellung bei linearen DDC-Algorithmen. Regelungstechnik 1971, 19, 237–244. [Google Scholar] [CrossRef]
- Huba, M.P.; Bisták, Z.; Žáková, K. Predictive Antiwindup PI and PID-Controllers Based on I1 and I2 Models with Dead Time. Theory Pract. Control Syst. 1998, 11, 532–535. [Google Scholar]
- Huba, M.; Vrančić, D. Extending the Model-Based Controller Design to Higher-Order Plant Models and Measurement Noise. Symmetry 2021, 13, 798. [Google Scholar] [CrossRef]
- Feldbaum, A. Optimal Control Systems; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Rodrigues, R.S.; Sombra, A.; Torrico, B.; Pereira, R.; de Almeida Filho, M.; Nogueira, F.G. Tuning rules for unstable dead-time processes. Eur. J. Control 2021, 59, 250–263. [Google Scholar] [CrossRef]
- Lima, T.A. Contributions to the Control of Input-Saturated Systems: Time Delay and Allocation Function Cases. Ph.D. Thesis, Universidade Federal Do Ceará, Fortaleza, Brazil, 2021. [Google Scholar]
- Huba, M.; Šimunek, M. Modular Approach to Teaching PID Control. IEEE Trans. Ind. Electr. 2007, 54, 3112–3121. [Google Scholar] [CrossRef]
- Huba, M.; Bistak, P. Dynamic classes in the PID control. In Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, USA, 2–4 June 1999; Volume 6, pp. 3868–3872. [Google Scholar]
- Huba, M.; Bisták, P.; Skachová, Z.; Žáková, K. P- and PD-Controllers for I1 and I2 Models with Dead Time. Theory Pract. Control Syst. 1998, 11, 514–519. [Google Scholar]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Grimholt, C.; Skogestad, S. Optimal PID control of double integrating processes. IFAC-PapersOnLine 2016, 49, 127–132. [Google Scholar] [CrossRef]
- Vítečková, M.; Víteček, A. 2DOF PI and PID controllers tuning. IFAC Proc. Vol. 2010, 9, 343–348. [Google Scholar] [CrossRef]
- Víteček, A.; Vítečková, M. Desired Model Method and Disturbance Observer for Integrating Plant with Time Delay. In Proceedings of the 2021 22nd International Carpathian Control Conference (ICCC), Velké Karlovice, Czech Republic, 31 May–1 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Alcántara, S.; Vilanova, R.; Pedret, C. PID Tuning: Analytical approach based on the weighted Sensitivity problem. Rev. Iberoam. Automática Inf. Ind. 2021, Article in press. [Google Scholar] [CrossRef]
- Huba, M.; Vrančić, D. Delay Equivalences in Tuning PID Control for the Double Integrator Plus Dead-Time. Mathematics 2021, 9, 328. [Google Scholar] [CrossRef]
- O’Dwyer, A. Handbook of PI and PID Controller Tuning Rules, 3rd ed.; Imperial College Press: London, UK, 2009. [Google Scholar]
- Huba, M. Designing Robust Controller Tuning for Dead Time Systems. IFAC Proc. Vol. 2010, 43, 218–225. [Google Scholar] [CrossRef]
- Strejc, V. Näherungsverfahren für aperiodische Übergangscharakteristiken. Regelungstechnik 1959, 7, 124–128. [Google Scholar]
- Huba, M. Triple real dominant pole tuning of a filtered PI controller. In Proceedings of the 2016 Cybernetics & Informatics (K&I), Levoca, Slovakia, 2–5 February 2016. [Google Scholar]
- Huba, M.; Bisták, P. Quadruple real dominant pole tuning of a filtered PID controller. In CONTROLO 2016; Lecture Notes in Electrical, Engineering, Garrido, P., Soares, F., Moreira, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 402. [Google Scholar]
- Huba, M.; Bisták, P.; Huba, T. Filtered PI and PID control of an Arduino based thermal plant. IFAC-PapersOnLine 2016, 49, 336–341. [Google Scholar] [CrossRef]
- Ťapák, P.; Huba, M. Laboratory Model of Thermal Plant. Identification and Control. IFAC-PapersOnLine 2016, 49, 28–33. [Google Scholar] [CrossRef]
- Huba, M.; Žáková, K. Comparing Controllers Based on IPDT Plant Models. IFAC-PapersOnLine 2017, 50, 15710–15715. [Google Scholar] [CrossRef]
- Huba, M.; Bisták, P.; Huba, T.; Vrančič, D. Comparing filtered PID and Smith Predictor Control of a Thermal Plant. In Proceedings of the 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE), Dubrovnik, Croatia, 4–6 October 2017. [Google Scholar]
- Huba, M.; Huba, T. Modifications of Model Free Control to FOTD Plants; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–8. [Google Scholar]
- Huba, M. Extending Spectrum of Filtered Controllers for IPDT Plant Models. In Proceedings of the 2018 Cybernetics & Informatics (K&I), Lazy pod Makytou, Slovakia, 31 January–3 February 2018. [Google Scholar]
- Huba, M. Performance Measures and the Robust and Optimal Control Design. IFAC-PapersOnLine 2018, 51, 960–965. [Google Scholar] [CrossRef]
- Vrančcič, D.; Huba, M.; Oliveira, P.M. PID controller tuning for integrating processes. In Proceedings of the 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control, Ghent, Belgium, 9–11 May 2018; pp. 586–591. [Google Scholar]
- Huba, M.; Vrančič, D. Comparing filtered PI, PID and PIDD2 control for the FOTD plants. IFAC-PapersOnLine 2018, 51, 954–959. [Google Scholar] [CrossRef]
- Huba, M.; Vrančič, D.; Bisták, P. Control for IPDT Plants. Part 1: Disturbance Response. In Proceedings of the 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia, 19–22 June 2018. [Google Scholar]
- Huba, M.; Vrančič, D.; Bisták, P. Control for IPDT Plants. Part 2: Setpoint Response. In Proceedings of the 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia, 19–22 June 2018. [Google Scholar]
- Huba, M.; Vrančič, D. Introduction to the Discrete Time Control for the IPDT Plant. In Proceedings of the 15th IFAC Int. Conference on Programmable Devices and Embedded Systems, Ostrava, Crezh Republic, 23–25 May 2018; pp. 119–124. [Google Scholar]
- Huba, M. Constrained filtered PID Controller for IPDT plants. In Proceedings of the 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, 1–4 July 2019. [Google Scholar]
- Bisták, P.; Huba, M. Analysis of Higher Derivative Degree PID Controllers via Virtual Laboratory. In Proceedings of the 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, 1–4 July 2019. [Google Scholar]
- Huba, M.; Žáková, K.; Bisták, P.; Hypiusová, M.; Ťapák, P. Seeking a unique view to control of simple models. In Proceedings of the 12th IFAC Symposium Advances in Control Education, Philadelphia, PA, USA, 7–9 July 2019. [Google Scholar]
- Huba, M. Exploring PID tuning strategies considering noise impact in the IPDT plant control. In Proceedings of the 16th IFAC Int. Conference on Programmable Devices and Embedded Systems, High Tatras, Slovakia, 29–31 October 2019. [Google Scholar]
- Huba, M. Model-based higher-order PID control design. IFAC-PapersOnLine 2020, 53, 4844–4849. [Google Scholar] [CrossRef]
- Huba, M.; Kozák, S. From e-Learning to Industry 4.0. In Proceedings of the 2016 International Conference on Emerging eLearning Technologies and Applications (ICETA), Vysoké Tatry, Slovakia, 24–25 November 2016; pp. 103–108. [Google Scholar]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0: A Glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Fliess, M.; Join, C. Stability margins and model-free control: A first look. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014; pp. 454–459. [Google Scholar]
- Fliess, M.; Join, C. An alternative to proportional-integral and proportional-integral-derivative regulators: Intelligent proportional-derivative regulators. Int. J. Robust Nonlinear Control 2021, accepted. [Google Scholar]
- Åström, K.J.; Hägglund, T. PID Controllers: Theory, Design, and Tuning, 2nd ed.; Instrument Society of America, Research Triangle Park: Durham, NC, USA, 1995. [Google Scholar]
- Kothare, M.; Campo, P.J.; Morari, M.; Nett, C.N. A Unified Framework for the Study of Anti-windup Designs. Automatica 1994, 30, 1869–1883. [Google Scholar] [CrossRef] [Green Version]
- Huba, M. Comparing 2DOF PI and Predictive Disturbance Observer Based Filtered PI Control. J. Process Control 2013, 23, 1379–1400. [Google Scholar] [CrossRef]
- Vítečková, M.; Víteček, A. 2DOF PID controller tuning for integrating plants. In Proceedings of the 17th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 29 May–1 June 2016; pp. 793–797. [Google Scholar]
- Viteckova, M.; Vitecek, A.; Janacova, D. Robustness and Muliple Dominant Pole Method. In Proceedings of the 2020 21th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 27–29 October 2020; pp. 1–4. [Google Scholar]
- Huba, M. Performance measures, performance limits and optimal PI control for the IPDT plant. J. Process Control 2013, 23, 500–515. [Google Scholar] [CrossRef]
- Föllinger, O. Nichtlineare Regelungen; R. Oldenbourg Verlag: München, Germany, 1993. [Google Scholar]
- Glattfelder, A.; Schaufelberger, W. Control Systems with Input and Output Constraints; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Huba, M.; Bélai, I. Limits of a Simplified Controller Design Based on IPDT models. ProcIMechE Part I J. Syst. Control Eng. 2018, 232, 728–741. [Google Scholar] [CrossRef]
- Khalil, H. Nonlinear Systems, 2nd ed.; Prentice Hall Int.: London, UK, 1996. [Google Scholar]
- Hanus, R.; Kinnaert, M.; Henrotte, J. Conditioning technique, a general anti-windup and bumpless transfer method. Automatica 1987, 23, 729–739. [Google Scholar] [CrossRef]
Step from 0 to 0.4 | Step from 0.4 to 0.6 | Step from 0.6 to 0.3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PO | PO | PO | ||||||||||
1.023 | 0.096 | 1.154 | 8.00 | 0.314 | 0.110 | 1.678 | 6.00 | 0.656 | 0.066 | 0.870 | 6.00 | |
1.043 | 0.106 | 1.158 | 8.25 | 0.312 | 0.094 | 1.296 | 6.00 | 0.667 | 0.092 | 1.096 | 7.67 | |
1.064 | 0.098 | 0.584 | 8.75 | 0.311 | 0.088 | 0.744 | 5.00 | 0.679 | 0.072 | 0.480 | 7.33 | |
1.127 | 0.086 | 0.918 | 8.00 | 0.316 | 0.064 | 0.972 | 6.00 | 0.710 | 0.074 | 0.874 | 6.33 | |
1.078 | 0.118 | 3.000 | 6.00 | 0.324 | 0.102 | 3.060 | 8.00 | 0.729 | 0.080 | 2.298 | 4.67 | |
1.056 | 0.080 | 2.530 | 5.50 | 0.319 | 0.126 | 4.204 | 6.50 | 0.693 | 0.066 | 2.062 | 4.67 | |
1.105 | 0.056 | 2.372 | 1.00 | 0.342 | 0.086 | 3.578 | 1.50 | 0.701 | 0.032 | 1.730 | 0.33 | |
1.061 | 0.106 | 2.920 | 6.25 | 0.326 | 0.106 | 3.464 | 5.50 | 0.681 | 0.054 | 1.922 | 4.33 | |
1.101 | 0.094 | 1.646 | 5.75 | 0.342 | 0.094 | 2.476 | 3.00 | 0.699 | 0.056 | 1.140 | 3.67 | |
1.084 | 0.078 | 2.740 | 1.25 | 0.334 | 0.116 | 3.974 | 4.00 | 0.663 | 0.054 | 2.026 | 1.00 | |
1.342 | 0.032 | 1.944 | 0.25 | 0.583 | 0.068 | 2.620 | 1.50 | 0.886 | 0.034 | 1.834 | 0.33 | |
1.143 | 0.072 | 2.066 | 5.25 | 0.322 | 0.076 | 2.758 | 6.00 | 0.703 | 0.068 | 2.456 | 5.00 | |
1.168 | 0.032 | 1.628 | 0.50 | 0.337 | 0.044 | 2.572 | 1.00 | 0.711 | 0.044 | 2.170 | 0.67 | |
1.012 | 0.104 | 3.026 | 5.25 | 0.334 | 0.160 | 5.438 | 7.50 | 0.740 | 0.078 | 2.468 | 4.67 | |
1.065 | 0.072 | 2.776 | 1.00 | 0.332 | 0.144 | 5.592 | 5.00 | 0.764 | 0.042 | 1.452 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huba, M.; Chamraz, S.; Bistak, P.; Vrancic, D. Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable. Sensors 2021, 21, 6157. https://doi.org/10.3390/s21186157
Huba M, Chamraz S, Bistak P, Vrancic D. Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable. Sensors. 2021; 21(18):6157. https://doi.org/10.3390/s21186157
Chicago/Turabian StyleHuba, Mikulas, Stefan Chamraz, Pavol Bistak, and Damir Vrancic. 2021. "Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable" Sensors 21, no. 18: 6157. https://doi.org/10.3390/s21186157
APA StyleHuba, M., Chamraz, S., Bistak, P., & Vrancic, D. (2021). Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable. Sensors, 21(18), 6157. https://doi.org/10.3390/s21186157