Validity, Reliability and Sensitivity to Change of Three Consumer-Grade Activity Trackers in Controlled and Free-Living Conditions among Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants Recruitment
2.2. Measurement Devices and Equipment
- Polar Vantage M (Polar Electro OY, Kempele, Finland) is a multi-sensor wrist-worn activity tracking device (mass 45 g) that computes data on the following: steps taken, calories burned, distance travelled and time spent resting (sleep and rest, lying down) and sitting (sitting or other passive behavior); time spent in low-intensity activity (standing work, light household chores), medium-intensity activity (walking and other moderate activities) and high-intensity activity (jogging, running and other intense activities); and some others. The activity tracker is water resistant with a battery autonomy of up to 7 days (suggested price: EUR 279.95, on-the-market date: October 2018).
- Garmin Vivoactive 4s (Garmin, Olathe, Kansas, USA) is a multi-sensor wrist-worn activity tracking device (mass 40 g) that computes data on steps taken, calories burned, floors climbed, distance travelled, intensity minutes (i.e., minutes of moderate-to-vigorous physical activity (MVPA) in bouts of at least 10 min, where vigorous minutes are doubled when added), total sleep time and some others. The activity tracker is water resistant with a battery life of up to 7 days (suggested price: EUR 279.99, on-the-market date: October 2019).
- Garmin Vivosport (Garmin, Olathe, KS, USA) is a multi-sensor wrist-worn activity tracking device (mass 27 g) that computes data on steps taken, calories burned, floors climbed, distance travelled, intensity minutes, total sleep time and some others. The activity tracker is water resistant with a battery life of up to 7 days (suggested price: EUR 109.99, on-the-market date: September 2017).
- Panasonic HDC-HS900 (Panasonic Corporation, Kadoma, Osaka, Japan) is a high-resolution video camera, with effective video resolution of 2.53 MP, a focal length of 3.45–41.4 mm and automatic or manual focus adjustments. The digital video format is AVCHS 1920 × 1080, and the camera stores data on the 220 GB HDD internal storage or external SD memory card.
- ActiGraph wGT3X-BT (ActiGraph LLC, Pensacola, FL, USA) is small and light (4.6 cm × 3.3 cm × 1.5 cm; 19 g) research-grade physical activity monitor (3-axial accelerometer), which provides a variety of physical activity and sleep measures over the 24-hour movement continuum (sleep time and sedentary time; light-, moderate- and vigorous-intensity physical activity; as well as bout length of each activity, steps taken, activity counts, energy expenditure and some others). Sampling frequency can be set manually from 30 to 100 Hz. The device is not fully water resistant (i.e., not made for swimming) with a battery life of up to 28 days.
2.3. Study Protocol in Controlled Conditions
- Preferred pace walking (for 5 min);
- Slow pace walking (for 5 min);
- Tidying the dish (for 5 min);
- Playing cards task (for 5 min).
2.4. Study Protocol in Free-Living Conditions
2.5. Data Management and Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. The First Part: Controlled Conditions
3.2. The Second Part: Free-Living Conditions
3.2.1. Validity Evaluated
3.2.2. Evaluated Reliability and Sensitivity
4. Discussion
4.1. Comparisons to Previous Studies
4.2. Implications for Clinical and Research Purposes
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
BMR | basal metabolic rate |
Cpm | counts per minute |
ES | Cohen’s effect size |
GR | Guyatt’s responsiveness coefficient |
HR | heart rate |
ICC | intraclass correlation coefficient |
LIPA | light physical activity |
MAPE | mean absolute percentage error |
MDC | minimal detachable change |
ME | mean error |
MPE | mean percentage error |
MVPA | moderate-to-vigorous physical activity |
PA | physical activity |
RMSE | root mean square error |
SB | sedentary behavior |
SD | standard deviation |
SEM | standard error of measurement |
sTEE | standardized typical error |
References
- Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report; Physical Activity Guidelines Advisory Committee: Washington, DC, USA, 2018. [Google Scholar]
- Janz, K.F. Physical activity in epidemiology: Moving from questionnaire to objective measurement. Br. J. Sports Med. 2006, 40, 191–192. [Google Scholar] [CrossRef] [Green Version]
- Dowd, K.P.; Szeklicki, R.; Minetto, M.A.; Murphy, M.H.; Polito, A.; Ghigo, E.; van der Ploeg, H.; Ekelund, U.; Maciaszek, J.; Stemplewski, R.; et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: A DEDIPAC study. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 15. [Google Scholar] [CrossRef]
- Brage, S.; Brage, N.; Franks, P.W.; Ekelund, U.; Wareham, N.J. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur. J. Clin. Nutr. 2005, 59, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Bhammar, D.M.; Sawyer, B.J.; Tucker, W.J.; Lee, J.M.; Gaesser, G.A. Validity of SenseWear® Armband v5.2 and v2.2 for estimating energy expenditure. J. Sports Sci. 2016, 34, 1830–1838. [Google Scholar] [CrossRef] [Green Version]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; van Hees, V.T.; Trenell, M.I.; Owen, C.G.; et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed]
- Dinesen, B.; Dittmann, L.; Gade, J.D.; Jørgensen, C.K.; Hollingdal, M.; Leth, S.; Melholt, C.; Spindler, H.; Refsgaard, J. Future Patien” Telerehabilitation for Patients With Heart Failure: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2019, 8, e14517. [Google Scholar] [CrossRef]
- Statista. Number of Connected Wearable Devices Worldwide from 2016 to 2022. Available online: https://www.statista.com/statistics/487291/global-connected-wearable-devices/#statisticContainer (accessed on 24 December 2020).
- Cooper, C.; Gross, A.; Brinkman, C.; Pope, R.; Allen, K.; Hastings, S.; Bogen, B.E.; Goode, A.P. The impact of wearable motion sensing technology on physical activity in older adults. Exp. Gerontol. 2018, 112, 9–19. [Google Scholar] [CrossRef]
- Oliveira, J.S.; Sherrington, C.; Zheng, E.R.Y.; Franco, M.R.; Tiedemann, A. Effect of interventions using physical activity trackers on physical activity in people aged 60 years and over: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 1188–1194. [Google Scholar] [CrossRef]
- Kelly, P.; Fitzsimons, C.; Baker, G. Should we reframe how we think about physical activity and sedentary behaviour measurement? Validity and reliability reconsidered. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dontje, M.L.; Dall, P.M.; Skelton, D.A.; Gill, J.M.R.; Chastin, S.F.M.; Seniors USP Team. Reliability, minimal detectable change and responsiveness to change: Indicators to select the best method to measure sedentary behaviour in older adults in different study designs. PLoS ONE 2018, 13, e0195424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alharbi, M.; Straiton, N.; Smith, S.; Neubeck, L.; Gallagher, R. Data management and wearables in older adults: A systematic review. Maturitas 2019, 124, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR mHealth uHealth 2020, 8, e18694. [Google Scholar] [CrossRef]
- Straiton, N.; Alharbi, M.; Bauman, A.; Neubeck, L.; Gullick, J.; Bhindi, R.; Gallagher, R. The validity and reliability of consumer-grade activity trackers in older, community-dwelling adults: A systematic review. Maturitas 2018, 112, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welk, G.J.; Bai, Y.; Lee, J.M.; Godino, J.; Saint-Maurice, P.F.; Carr, L. Standardizing Analytic Methods and Reporting in Activity Monitor Validation Studies. Med. Sci. Sports Exerc. 2019, 51, 1767–1780. [Google Scholar] [CrossRef]
- Johnston, W.; Judice, P.B.; Molina García, P.; Mühlen, J.M.; Lykke Skovgaard, E.; Stang, J.; Schumann, M.; Cheng, S.; Bloch, W.; Brønd, J.C.; et al. Recommendations for determining the validity of consumer wearable and smartphone step count: Expert statement and checklist of the INTERLIVE network. Br. J. Sports Med. 2020, 55, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A.; Silder, A.; Heiderscheit, B.; Mahoney, J.; Thelen, D.G. Differences in lower-extremity muscular activation during walking between healthy older and young adults. J. Electromyogr. Kinesiol. 2009, 19, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Burton, E.; Hill, K.D.; Lautenschlager, N.T.; Thøgersen-Ntoumani, C.; Lewin, G.; Boyle, E.; Howie, E. Reliability and validity of two fitness tracker devices in the laboratory and home environment for older community-dwelling people. BMC Geriatr. 2018, 18, 103. [Google Scholar] [CrossRef]
- Herrmann, S.D.; Barreira, T.V.; Kang, M.; Ainsworth, B.E. How Many Hours Are Enough? Accelerometer Wear Time May Provide Bias in Daily Activity Estimates. J. Phys. Act. Health 2013, 10, 742. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, C.; Yang, C.-H.; West, D. A Comparison of Sedentary Behavior as Measured by the Fitbit and ActivPAL in College Students. Int. J. Environ. Res. Public Health 2021, 18, 3914. [Google Scholar] [CrossRef] [PubMed]
- Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm. Med. Sci. Sports Exerc. 2011, 43, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- ActiGraph. What is the Difference Among the Energy Expenditure Algorithms? Available online: https://actigraphcorp.force.com/support/s/article/What-is-the-difference-among-the-Energy-Expenditure-Algorithms (accessed on 24 December 2020).
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Hart, T.L.; Swartz, A.M.; Cashin, S.E.; Strath, S.J. How many days of monitoring predict physical activity and sedentary behaviour in older adults? Int. J. Behav. Nutr. Phys. Act. 2011, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. Accuracy of the multisensory wristwatch polar vantage’s estimation of energy expenditure in various activities: Instrument validation study. J. Med. Internet Res. 2019, 21, e14534. [Google Scholar] [CrossRef] [PubMed]
- Düking, P.; Giessing, L.; Frenkel, M.O.; Koehler, K.; Holmberg, H.C.; Sperlich, B. Wrist-worn wearables for monitoring heart rate and energy expenditure while sitting or performing light-to-vigorous physical activity: Validation study. JMIR mHealth uHealth 2020, 8. [Google Scholar] [CrossRef]
- Climstein, M.; Alder, J.L.; Brooker, A.M.; Cartwright, E.J.; Kemp-Smith, K.; Simas, V.; Furness, J. Reliability of the Polar Vantage M Sports Watch when Measuring Heart Rate at Different Treadmill Exercise Intensities. Sports 2020, 8, 117. [Google Scholar] [CrossRef]
- Wahl, Y.; Düking, P.; Droszez, A.; Wahl, P.; Mester, J. Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Front. Physiol. 2017, 8, 725. [Google Scholar] [CrossRef]
- Budig, M.; Höltke, V.; Keiner, M. Accuracy of optical heart rate measurement and distance measurement of a fitness tracker and their consequential use in sports. Ger. J. Exerc. 2019, 49, 402–409. [Google Scholar] [CrossRef]
- Tedesco, S.; Sica, M.; Ancillao, A.; Timmons, S.; Barton, J.; O’Flynn, B. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PLoS ONE 2019, 14, e0216891. [Google Scholar] [CrossRef] [Green Version]
- Phillips, L.J.; Petroski, G.F.; Markis, N.E. A Comparison of Accelerometer Accuracy in Older Adults. Res. Gerontol. Nurs. 2015, 8, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Thorup, C.B.; Andreasen, J.J.; Sørensen, E.E.; Grønkjær, M.; Dinesen, B.I.; Hansen, J. Accuracy of a step counter during treadmill and daily life walking by healthy adults and patients with cardiac disease. BMJ Open 2017, 7, e011742. [Google Scholar] [CrossRef]
- Larsen, R.T.; Korfitsen, C.B.; Juhl, C.B.; Andersen, H.B.; Langberg, H.; Christensen, J. Criterion validity for step counting in four consumer-grade physical activity monitors among older adults with and without rollators. Eur. Rev. Aging Phys. Act. 2020, 17, 1. [Google Scholar] [CrossRef]
- Lauritzen, J.; Muñoz, A.; Luis Sevillano, J.; Civit, A. The usefulness of activity trackers in elderly with reduced mobility: A case study. Stud. Health Technol. Inform. 2013, 192, 759–762. [Google Scholar]
- Simpson, L.A.; Eng, J.J.; Klassen, T.D.; Lim, S.B.; Louie, D.R.; Parappilly, B.; Sakakibara, B.M.; Zbogar, D. Capturing step counts at slow walking speeds in older adults: Comparison of ankle and waist placement of measuring device. J. Rehabil. Med. 2015, 47, 830–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, S.; Sica, M.; Ancillao, A.; Timmons, S.; Barton, J.; O’Flynn, B. Validity Evaluation of the Fitbit Charge2 and the Garmin vivosmart HR+ in Free-Living Environments in an Older Adult Cohort. JMIR mHealth uHealth 2019, 7, e13084. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.; Bauman, A.; Neubeck, L.; Gallagher, R. Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. Eur. J. Prev. Cardiol. 2016, 23, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451. [Google Scholar] [CrossRef]
- Fitbit. What Are Active Zone Minutes or Active Minutes on My Fitbit Device? Available online: https://help.fitbit.com/articles/en_US/Help_article/1379.htm (accessed on 12 December 2020).
- Saint-Maurice, P.F.; Troiano, R.P.; Matthews, C.E.; Kraus, W.E. Moderate-to-Vigorous Physical Activity and All-Cause Mortality: Do Bouts Matter? J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Chaput, J.-P.; Giangregorio, L.M.; Janssen, I.; Saunders, T.J.; Kho, M.E.; Poitras, V.J.; Tomasone, J.R.; El-Kotob, R.; McLaughlin, E.C.; et al. Canadian 24-Hour Movement Guidelines for Adults aged 18–64 years and Adults aged 65 years or older: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 2020, 45, S57–S102. [Google Scholar] [CrossRef]
- Jurakić, D.; Pedišić, Ž. Croatian 24-Hour Guidelines for Physical Activity, Sedentary Behaviour, and Sleep: A Proposal Based on a Systematic Review of Literature. Medicus 2019, 28, 143. [Google Scholar]
- World Health Organisation. Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age; World Health Organisation: Geneva, Switzerland, 2019. [Google Scholar]
- Powell, C.; Browne, L.D.; Carson, B.P.; Dowd, K.P.; Perry, I.J.; Kearney, P.M.; Harrington, J.M.; Donnelly, A.E. Use of Compositional Data Analysis to Show Estimated Changes in Cardiometabolic Health by Reallocating Time to Light-Intensity Physical Activity in Older Adults. Sports Med. 2020, 50, 205–217. [Google Scholar] [CrossRef]
- Boeselt, T.; Spielmanns, M.; Nell, C.; Storre, J.H.; Windisch, W.; Magerhans, L.; Beutel, B.; Kenn, K.; Greulich, T.; Alter, P.; et al. Validity and Usability of Physical Activity Monitoring in Patients with Chronic Obstructive Pulmonary Disease (COPD). PLoS ONE 2016, 11, e0157229. [Google Scholar] [CrossRef]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Kastelic, K. Raw Data: Validity of Fitness Trackers When Worn by Older Adults. 2021. Available online: https://zenodo.org/record/5158551#.YUQ997gzbIU (accessed on 17 September 2021).
Participants, n | Age (SD), Years | Body Height (SD), cm | Body Mass (SD), kg | BMI (SD), kg/m2 | |
---|---|---|---|---|---|
Controlled conditions | |||||
male | 13 | 74.7 (4.6) | 176 (8) | 79.5 (8.3) | 25.7 (2.0) |
female | 15 | 74.0 (5.3) | 164 (6) | 69.4 (7.7) | 25.8 (3.1) |
all | 28 | 74.3 (4.9) | 169 (9) | 74.1 (9.3) | 25.8 (2.6) |
Free-living conditions | |||||
Polar Vantage M | |||||
male | 7 | 69.9 (5.2) | 179 (5) | 82.2 (9.2) | 25.7 (2.7) |
female | 9 | 68.8 (5.8) | 160 (4) | 66.9 (9.3) | 26.0 (2.9) |
all | 16 | 69.3 (5.4) | 168 (11) | 73.6 (11.9) | 25.9 (2.7) |
Garmin Vivoactive 4s | |||||
male | 5 | 70.7 (2.8) | 174 (6) | 76.6 (8.8) | 25.2 (2.5) |
female | 12 | 69.2 (6.3) | 162 (6) | 71.3 (13.9) | 27.3 (5.1) |
all | 17 | 69.6 (5.5) | 166 (9) | 72.9 (12.6) | 26.6 (4.6) |
Garmin Vivosport | |||||
male | 7 | 73.6 (5.8) | 175 (10) | 75.5 (6.6) | 24.6 (1.7) |
female | 10 | 70.9 (8.1) | 160 (3) | 68.9 (15.8) | 27.0 (5.8) |
all | 17 | 72.0 (7.2) | 166 (10) | 71.6 (13.0) | 26.0 (4.7) |
Mean (SD), Steps | ME (SD), Steps | MPE (SD), % | MAPE (SD), % | RMSE (SD), Steps | ICC2,1 | t-Test (p-Value) | |
---|---|---|---|---|---|---|---|
Preferred pace walking | |||||||
Polar Vantage M | 575 (66) | 12 (41) | 2 (8) | 6 (6) | 42 (60) | 0.75 (p = 0.000) | 0.139 |
Garmin Vivoactive 4s | 582 (53) | 5 (16) | 1 (3) | 2 (2) | 17 (25) | 0.95 (p = 0.000) | 0.138 |
Garmin Vivosport | 590 (59) | −3 (23) | −1 (4) | 2 (4) | 23 (48) | 0.92 (p = 0.000) | 0.452 |
Slow pace walking | |||||||
Polar Vantage M | 482 (84) | 27 (77) | 5 (16) | 11 (13) | 80 (122) | 0.37 (p = 0.019) | 0.075 |
Garmin Vivoactive 4s | 501 (49) | 8 (23) | 2 (4) | 2 (4) | 24 (40) | 0.89 (p = 0.000) | 0.062 |
Garmin Vivosport | 505 (50) | 4 (15) | 1 (3) | 2 (2) | 15 (29) | 0.96 (p = 0.000) | 0.158 |
Tidying the dish | |||||||
Polar Vantage M | 282 (119) | −240 (122) | −751 (484) | 751 (484) | 268 (254) | 0.00 (p = 0.524) | 0.000 |
Garmin Vivoactive 4s | 45 (35) | −3 (47) | −49 (141) | 107 (102) | 46 (56) | −0.18 (p = 0.820) | 0.702 |
Garmin Vivosport | 79 (41) | −37 (51) | −147 (175) | 160 (163) | 62 (67) | −0.10 (p = 0.795) | 0.001 |
Playing cards | |||||||
Polar Vantage M | 47 (91) | −47 (91) | NaN | NaN | 101 (180) | NaN | 0.011 |
Garmin Vivoactive 4s | 7 (14) | −7 (14) | NaN | NaN | 16 (25) | NaN | 0.015 |
Garmin Vivosport | 23 (49) | −23 (49) | NaN | NaN | 53 (98) | NaN | 0.020 |
All controlled tasks | |||||||
Polar Vantage M | 1386 (236) | −248 (212) | −22 (20) | 23 (18) | 324 (368) | 0.18 (p = 0.035) | 0.000 |
Garmin Vivoactive 4s | 1135 (102) | 2 (55) | 0 (5) | 3 (3) | 54 (80) | 0.87 (p = 0.000) | 0.813 |
Garmin Vivosport | 1196 (119) | −59 (65) | −5 (6) | 6 (5) | 87 (111) | 0.75 (p = 0.000) | 0.000 |
Mean (SD), Steps | ME (SD), Steps | MPE (SD), % | MAPE (SD), % | RMSE (SD), Steps | ICC2,1 | t-Test (p-Value) | |
---|---|---|---|---|---|---|---|
Polar Vantage M (n = 16) | |||||||
steps | 16735 (5690) | −6719 (4168) | −84 (63) | 84 (63) | 7838 (8547) | 0.37 (p = 0.001) | 0.000 |
active kcal | 1328 (412) | −715 (431) | −201 (228) | 202 (228) | 828 (783) | 0.15 (p = 0.056) | 0.000 |
SB (mins) | 415 (168) | 165 (114) | 30 (19) | 33 (11) | 198 (160) | 0.39 (p = 0.000) | 0.000 |
LIPA (mins) | 342 (62) | −5 (95) | −8 (34) | 25 (24) | 92 (110) | 0.30 (p = 0.132) | 0.844 |
MIPA (mins) | 243 (102) | −191 (112) | −1407 (2987) | 1408 (2987) | 219 (229) | -0.01 (p = 0.539) | 0.000 |
VIPA (mins) | 29 (29) | −29 (29) | NaN | NaN | 40 (54) | 0.00 (p = 0.500) | 0.001 |
sleep (mins) | 437 (81) | 27 (75) | 5 (14) | 8 (12) | 76 (134) | 0.62 (p = 0.004) | 0.121 |
Garmin Vivoactive 4s (n = 15) | |||||||
steps | 9726 (5113) | −639 (796) | −5 (11) | 9 (6) | 1000 (1116) | 0.98 (p = 0.000) | 0.006 |
active kcal | 389 (212) | 192 (224) | 26 (36) | 40 (19) | 290 (324) | 0.58 (p = 0.001) | 0.005 |
int mins | 10 (10) | 21 (31) | −23 (201) | 117 (162) | 37 (55) | 0.01 (p = 0.473) | 0.020 |
sleep (mins) | 490 (93) | −18 (33) | −4 (7) | 7 (4) | 37 (43) | 0.93 (p = 0.000) | 0.116 |
Garmin Vivosport (n = 17) | |||||||
steps | 9568 (4843) | −740 (1262) | −8 (16) | 15 (9) | 1431 (1571) | 0.95 (p = 0.000) | 0.028 |
active kcal | 526 (225) | −3 (252) | −19 (64) | 50 (43) | 245 (267) | 0.55 (p = 0.011) | 0.958 |
int mins | 22 (25) | 6 (39) | −201 (809) | 291 (779) | 39 (51) | 0.14 (p = 0.300) | 0.540 |
sleep (mins) | 479 (72) | 25 (65) | 4 (12) | 9 (8) | 67 (94) | 0.60 (p = 0.005) | 0.161 |
Mean (SD), Random Day 1 | Mean (SD), Random Day 2 | Systematic Difference | ICC2,1 (95% CI) | SEM | MDC | ES | GR | |
---|---|---|---|---|---|---|---|---|
Polar Vantage M (n = 16) | ||||||||
steps | 16,330 | 16822 | F (2,32) = 0.086, | 0.68 | 3908 | 10,832 | 0.077 | 0.126 |
(6358) | (6941) | p = 0.918, ηp2 = 0.005 | (0.43, 0.85) | |||||
active kcal | 1330 | 1380 | F (2,32) = 0.000, | 0.80 | 215 | 597 | 0.099 | 0.232 |
(503) | (496) | p > 0.999, ηp2 = 0.000 | (0.61, 0.91) | |||||
SB (mins) | 384 | 371 | F (2,30) = 0.196, | 0.66 | 83 | 229 | 0.087 | 0.157 |
(149) | (141) | p = 0.823, ηp2 = 0.013 | (0.39, 0.85) | |||||
LIPA (mins) | 353 | 364 | F (2,32) = 0.700, | 0.43 | 68 | 187 | 0.169 | 0.163 |
(65) | (99) | p = 0.504, ηp2 = 0.042 | (0.13, 0.71) | |||||
MIPA (mins) | 247 | 252 | F (2,32) = 0.432, | 0.75 | 54 | 149 | 0.043 | 0.093 |
(117) | (105) | p = 0.653, ηp2 = 0.026 | (0.54, 0.89) | |||||
VIPA (mins) | 28 | 30 | F (2,32) = 0.072, | 0.74 | 19 | 53 | 0.054 | 0.105 |
(37) | (44) | p = 0.931, ηp2 = 0.004 | (0.51, 0.88) | |||||
sleep (mins) | 430 | 419 | F (2,30) = 0.002, | 0.42 | 79 | 218 | 0.128 | 0.140 |
(86) | (129) | p = 0.998, ηp2 = 0.000 | (0.11, 0.71) | |||||
Garmin Vivoactive 4s (n = 16) | ||||||||
steps | 9300 | 10,444 | F (2,28) = 0.332, | 0.70 | 2783 | 7714 | 0.206 | 0.411 |
(5557) | (3979) | p = 0.720, ηp2 = 0.023 | (0.44, 0.88) | |||||
active kcal | 370 | 412 | F (2,28) = 0.584, | 0.66 | 161 | 446 | 0.193 | 0.261 |
(218) | (200) | p = 0.564, ηp2 = 0.040 | (0.38, 0.85) | |||||
int mins | 8 | 9 | F (2,28) = 0.564, | 0.24 | 15 | 42 | 0.056 | 0.065 |
(18) | (18) | p = 0.575, ηp2 = 0.039 | (−0.06, 0.59) | |||||
sleep (mins) | 507 | 490 | F (2,28) = 0.946, | 0.41 | 87 | 242 | 0.189 | 0.194 |
(90) | (115) | p = 0.401, ηp2 = 0.063 | (0.09, 0.71) | |||||
Garmin Vivosport (n = 17) | ||||||||
steps | 10,766 | 10,841 | F (2,32) = 0.208, | 0.65 | 3461 | 9592 | 0.011 | 0.022 |
(6732) | (6134) | p = 0.814, ηp2 = 0.013 | (0.39, 0.84) | |||||
active kcal | 606 | 591 | F (2,32) = 2.560, | 0.48 | 206 | 572 | 0.045 | 0.073 |
(337) | (370) | p = 0.093, ηp2 = 0.138 | (0.18, 0.74) | |||||
int mins | 21 | 37 | F (1.4,23.1) = 0.256, | 0.19 | 41 | 113 | 0.516 | 0.391 |
(31) | (68) | p = 0.703, ηp2 = 0.016 | (−0.09, 0.53) | |||||
sleep (mins) | 501 | 452 | F (2,28) = 2.985, | 0.74 | 38 | 104 | 0.671 | 1.302 |
(73) | (101) | p = 0.067, ηp2 = 0.176 | (0.51, 0.90) | |||||
ActiGraph (n = 40) | ||||||||
steps | 9366 | 10316 | F (2,102) = 1.048, | 0.58 | 3091 | 8568 | 0.174 | 0.307 |
(5456) | (5632) | p = 0.355, ηp2 = 0.020 | (0.40, 0.73) | |||||
active kcal | 586 | 643 | F (2,102) = 2.054, | 0.67 | 189 | 524 | 0.153 | 0.302 |
(373) | (408) | p = 0.133, ηp2 = 0.039 | (0.52, 0.80) | |||||
SB (mins) | 579 | 574 | F (2,102) = 1.695, | 0.65 | 78 | 215 | 0.035 | 0.064 |
(144) | (133) | p = 0.189, ηp2 = 0.032 | (0.49, 0.78) | |||||
LIPA (mins) | 316 | 324 | F (2,102) = 1.003, | 0.64 | 60 | 167 | 0.085 | 0.132 |
(94) | (106) | p = 0.370, ηp2 = 0.019 | (0.48, 0.77) | |||||
MIPA (mins) | 50 | 56 | F (1.8,89.4) = 0.830, | 0.61 | 29 | 81 | 0.122 | 0.204 |
(49) | (48) | p = 0.426, ηp2 = 0.016 | (0.44, 0.75) | |||||
VIPA (mins) | 1 | 1 | F (1.0,52.1) = 1.878, | 0.02 | 7 | 19 | 0.000 | 0.000 |
(7) | (6) | p = 0.176, ηp2 = 0.036 | (−0.14, 0.22) | |||||
bouted MVPA | 30 | 38 | F (2,102) = 0.760, | 0.63 | 26 | 71 | 0.186 | 0.310 |
(mins) | (43) | (44) | p = 0.470, ηp2 = 0.015 | (0.46, 0.76) | ||||
Diary (n = 40) | ||||||||
sleep (mins) | 494 | 484 | F (2,102) = 0.218, | 0.75 | 45 | 125 | 0.120 | 0.221 |
(83) | (85) | p = 0.805, ηp2 = 0.004 | (0.62, 0.85) |
Mean (SD), Day 1–3 | Mean (SD), Day 4–6 | Systematic Difference | ICC2,1 (95% CI) | SEM | MDC | ES | GR | |
---|---|---|---|---|---|---|---|---|
Polar Vantage M (n = 12) | ||||||||
steps | 14453 | 14320 | F (1,11) = 0.021, | 0.82 | 2229 | 6178 | 0.028 | 0.060 |
(4668) | (5665) | p = 0.887, ηp2 = 0.002 | (0.48, 0.94) | |||||
active kcal | 1365 | 1398 | F (1,11) = 0.361, | 0.86 | 133 | 368 | 0.102 | 0.248 |
(322) | (393) | p = 0.560, ηp2 = 0.032 | (0.59, 0.96) | |||||
SB (mins) | 427 | 430 | F (1,10) = 0.027, | 0.78 | 53 | 147 | 0.029 | 0.056 |
(102) | (124) | p = 0.873, ηp2 = 0.003 | (0.37, 0.94) | |||||
LIPA (mins) | 327 | 346 | F (1,11) = 1.099, | 0.43 | 43 | 120 | 0.345 | 0.440 |
(55) | (59) | p = 0.317, ηp2 = 0.091 | (−0.16, 0.79) | |||||
MIPA (mins) | 221 | 222 | F (1,11) = 0.002, | 0.90 | 33 | 91 | 0.010 | 0.030 |
(100) | (106) | p = 0.966, ηp2 = 0.000 | (0.69, 0.97) | |||||
VIPA (mins) | 28 | 26 | F (1,11) = 0.132, | 0.83 | 12 | 34 | 0.077 | 0.162 |
(26) | (34) | p = 0.723, ηp2 = 0.012 | (0.52, 0.95) | |||||
sleep (mins) | 411 | 434 | F (1,8) = 4.217, | 0.75 | 24 | 66 | 0.371 | 0.963 |
(62) | (63) | p = 0.074, ηp2 = 0.345 | (0.230, 0.94) | |||||
Garmin Vivoactive 4s (n = 7) | ||||||||
steps | 7695 | 7781 | F (1,6) = 0.006, | 0.24 | 2116 | 5864 | 0.053 | 0.041 |
(1608) | (3029) | p = 0.942, ηp2 = 0.001 | (−0.56, 0.81) | |||||
active kcal | 311 | 367 | F (1,6) = 0.981, | 0.54 | 104 | 289 | 0.718 | 0.536 |
(78) | (205) | p = 0.360, ηp2 = 0.140 | (−0.26, 0.90) | |||||
int mins | 9 | 10 | F (1,6) = 0.001, | 0.06 | 11 | 31 | 0.083 | 0.090 |
(12) | (11) | p = 0.982, ηp2 = 0.000 | (−0.68, 0.73) | |||||
sleep (mins) | 482 | 501 | F (1,5) = 0.030, | 0.61 | 45 | 125 | 0.188 | 0.422 |
(101) | (53) | p = 0.869, ηp2 = 0.006 | (−0.27, 0.93) | |||||
Garmin Vivosport (n = 11) | ||||||||
steps | 9327 | 8601 | F (1,10) = 0.456, | 0.66 | 2521 | 6987 | 0.174 | 0.288 |
(4167) | (4418) | p = 0.515, ηp2 = 0.044 | (0.13, 0.89) | |||||
active kcal | 623 | 495 | F (1,10) = 4.815, | 0.66 | 137 | 380 | 0.612 | 0.933 |
(209) | (259) | p = 0.053, ηp2 = 0.325 | (0.13, 0.90) | |||||
int mins | 18 | 23 | F (1,10) = 1.107, | 0.86 | 11 | 29 | 0.208 | 0.475 |
(24) | (31) | p = 0.317, ηp2 = 0.100 | (0.55, 0.96) | |||||
sleep (mins) | 474 | 464 | F (1,9) = 1.131, | 0.71 | 45 | 125 | 0.132 | 0.222 |
(76) | (97) | p = 0.315, ηp2 = 0.112 | (0.19, 0.92) | |||||
ActiGraph (n = 39) | ||||||||
Steps | 8424 | 8468 | F (1,38) = 0.008, | 0.75 | 2037 | 5646 | 0.012 | 0.022 |
(3696) | (4355) | p = 0.927, ηp2 = 0.000 | (0.57, 0.86) | |||||
active kcal | 549 | 512 | F (1,38) = 2.182, | 0.87 | 109 | 303 | 0.120 | 0.338 |
(309) | (303) | p = 0.148, ηp2 = 0.054 | (0.77, 0.93) | |||||
SB (mins) | 624 | 632 | F (1,38) = 0.381, | 0.90 | 38 | 106 | 0.071 | 0.210 |
(112) | (124) | p = 0.381, ηp2 = 0.020 | (0.81, 0.94) | |||||
LIPA (mins) | 307 | 290 | F (1,38) = 3.779, | 0.82 | 38 | 104 | 0.202 | 0.452 |
(84) | (93) | p = 0.059, ηp2 = 0.090 | (0.68, 0.90) | |||||
MIPA (mins) | 44 | 44 | F (1,38) = 0.008, | 0.78 | 17 | 48 | 0.000 | 0.000 |
(36) | (38) | p = 0.928, ηp2 = 0.000 | (0.62, 0.88) | |||||
VIPA (mins) | 1 | 0 | F (1,38) = 2.659, | 0.42 | 2 | 6 | 0.250 | 0.436 |
(4) | (1) | p = 0.111, ηp2 = 0.069 | (0.11, 0.65) | |||||
bouted MVPA | 25 | 30 | F (1,38) = 1.432, | 0.76 | 16 | 45 | 0.167 | 0.311 |
(mins) | (30) | (35) | p = 0.239, ηp2 = 0.036 | (0.59, 0.87) | ||||
Diary (n = 39) | ||||||||
sleep (mins) | 462 | 475 | F (1,38) = 3.998, | 0.87 | 29 | 81 | 0.157 | 0.442 |
(83) | (81) | p = 0.053, ηp2 = 0.095 | (0.77, 0.93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kastelic, K.; Dobnik, M.; Löfler, S.; Hofer, C.; Šarabon, N. Validity, Reliability and Sensitivity to Change of Three Consumer-Grade Activity Trackers in Controlled and Free-Living Conditions among Older Adults. Sensors 2021, 21, 6245. https://doi.org/10.3390/s21186245
Kastelic K, Dobnik M, Löfler S, Hofer C, Šarabon N. Validity, Reliability and Sensitivity to Change of Three Consumer-Grade Activity Trackers in Controlled and Free-Living Conditions among Older Adults. Sensors. 2021; 21(18):6245. https://doi.org/10.3390/s21186245
Chicago/Turabian StyleKastelic, Kaja, Marina Dobnik, Stefan Löfler, Christian Hofer, and Nejc Šarabon. 2021. "Validity, Reliability and Sensitivity to Change of Three Consumer-Grade Activity Trackers in Controlled and Free-Living Conditions among Older Adults" Sensors 21, no. 18: 6245. https://doi.org/10.3390/s21186245
APA StyleKastelic, K., Dobnik, M., Löfler, S., Hofer, C., & Šarabon, N. (2021). Validity, Reliability and Sensitivity to Change of Three Consumer-Grade Activity Trackers in Controlled and Free-Living Conditions among Older Adults. Sensors, 21(18), 6245. https://doi.org/10.3390/s21186245