Eigenbehaviour as an Indicator of Cognitive Abilities
Abstract
:1. Introduction
- First, a new method for location movement patterns is introduced.
- Second, the usage of this method for assessment of cognitive ability is demonstrated. This includes a discussion of the necessary hyper parameters and their validity.
- Finally, the usability of this method for the assessment of cognitive ability is demonstrated on the data of 48 participants, all above the age of 65, i.e., retirement age.
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Behaviour Matrix and Eigendecomposition
2.4. Prediction and Classification of Cognitive Ability
3. Results
4. Discussion
4.1. Limitations
4.2. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MoCA | Montreal cognitive assessment |
MCI | Mild cognitive impairment |
AD | Alzheimer’s disease |
MMSE | Mini-Mental State Examination |
ADL | Activities of daily living |
PIR | Passive infrared |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
RMSD | Root-mean-square deviation |
References
- Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch. Neurol. 2012, 69, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.A.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forlenza, O.V.; Radanovic, M.; Talib, L.L.; Gattaz, W.F. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: Randomised clinical trial. Br. J. Psychiatry 2019, 215, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Satu, A.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Seelye, A.; Leese, M.I.; Dorociak, K.; Bouranis, N.; Mattek, N.; Sharma, N.; Beattie, Z.; Riley, T.; Lee, J.; Cosgrove, K.; et al. Feasibility of In-Home Sensor Monitoring to Detect Mild Cognitive Impairment in Aging Military Veterans: Prospective Observational Study. JMIR Form. Res. 2020, 4, e16371. [Google Scholar] [CrossRef]
- McKay, K.A.; Manouchehrinia, A.; Berrigan, L.; Fisk, J.D.; Olsson, T.; Hillert, J. Long-term Cognitive Outcomes in Patients with Pediatric-Onset vs Adult-Onset Multiple Sclerosis. JAMA Neurol. 2019, 76, 1028–1034. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; et al. Mild cognitive impairment. Lancet 2006, 367, 1262–1270. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Galasko, D.; Klauber, M.R.; Hofstetter, C.R.; Salmon, D.P.; Lasker, B.; Thal, L.J. The Mini-Mental State Examination in the Early Diagnosis of Alzheimer’s Disease. Arch. Neurol. 1990, 47, 49–52. [Google Scholar] [CrossRef]
- Iverson, G.L. Interpretation of mini-mental state examination scores in community-dwelling elderly and geriatric neuropsychiatry patients. Int. J. Geriatr. Psychiatry 1998, 13, 661–666. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Ihle-Hansen, H.; Vigen, T.; Berge, T.; Einvik, G.; Aarsland, D.; Rønning, O.M.; Thommessen, B.; Røsjø, H.; Tveit, A.; Ihle-Hansen, H. Montreal Cognitive Assessment in a 63- to 65-year-old Norwegian Cohort from the General Population: Data from the Akershus Cardiac Examination 1950 Study. Dement. Geriatr. Cogn. Disord. Extra 2017, 7, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitan, R.M.; Wolfson, D. The Halstead-Reitan neuropsychological test battery and aging. Clin. Gerontol. 1986, 5, 39–61. [Google Scholar] [CrossRef]
- Jack, C.R.; Petersen, R.C.; Xu, Y.C.; O’Brien, P.C.; Smith, G.E.; Ivnik, R.J.; Boeve, B.F.; Waring, S.C.; Tangalos, E.G.; Kokmen, E. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999, 52, 1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarnall, A.J.; Breen, D.P.; Duncan, G.W.; Khoo, T.K.; Coleman, S.Y.; Firbank, M.J.; Nombela, C.; Winder-Rhodes, S.; Evans, J.R.; Rowe, J.B.; et al. Characterizing mild cognitive impairment in incident Parkinson disease: The ICICLE-PD study. Neurology 2014, 82, 308–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcolea, D.; Martínez-Lage, P.; Izagirre, A.; Clerigué, M.; Carmona-Iragui, M.; Alvarez, R.M.; Fortea, J.; Balasa, M.; Morenas-Rodríguez, E.; Lladó, A.; et al. Feasibility of lumbar puncture in the study of cerebrospinal fluid biomarkers for Alzheimer’s disease: A multicenter study in Spain. J. Alzheimer’s Dis. 2014, 39, 719–726. [Google Scholar] [CrossRef]
- Peskind, E.R.; Riekse, R.; Quinn, J.F.; Kaye, J.; Clark, C.M.; Farlow, M.R.; DeCarli, C.; Chabal, C.; Vavrek, D.; Raskind, M.A.; et al. Safety and acceptability of the research lumbar puncture. Alzheimer Dis. Assoc. Disord. 2005, 19, 220–225. [Google Scholar] [CrossRef]
- Menéndez-González, M. Routine lumbar puncture for the early diagnosis of Alzheimer’s disease. Is it safe? Front. Aging Neurosci. 2014, 6, 65. [Google Scholar]
- Paraschiv-Ionescu, A.; Perruchoud, C.; Buchser, E.; Aminian, K. Barcoding Human Physical Activity to Assess Chronic Pain Conditions. PLoS ONE 2012, 7, e32239. [Google Scholar] [CrossRef]
- Schütz, N.; Saner, H.; Rudin, B.; Botros, A.; Pais, B.; Santschi, V.; Buluschek, P.; Gatica-Perez, D.; Urwyler, P.; Marchal-Crespo, L.; et al. Validity of pervasive computing based continuous physical activity assessment in community-dwelling old and oldest-old. Sci. Rep. 2019, 9, 9662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, B.E.; Austin, D.; Seelye, A.; Petersen, J.; Yeargers, J.; Riley, T.; Sharma, N.; Mattek, N.; Wild, K.; Dodge, H.; et al. Pervasive Computing Technologies to Continuously Assess Alzheimer’s Disease Progression and Intervention Efficacy. Front. Aging Neurosci. 2015, 7, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.A.U.; Roy, N.; Holmes, S.; Gangopadhyay, A.; Galik, E. Automated Functional and Behavioral Health Assessment of Older Adults with Dementia. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; pp. 140–149. [Google Scholar] [CrossRef]
- Garcia-Constantino, M.; Konios, A.; Mustafa, M.A.; Nugent, C.; Morrison, G. Ambient and Wearable Sensor Fusion for Abnormal Behaviour Detection in Activities of Daily Living. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6. [Google Scholar]
- Urwyler, P.; Stucki, R.; Rampa, L.; Müri, R.; Mosimann, U.P.; Nef, T. Cognitive impairment categorized in community-dwelling older adults with and without dementia using in-home sensors that recognise activities of daily living. Sci. Rep. 2017, 7, 42084. [Google Scholar] [CrossRef] [Green Version]
- Rantz, M.J.; Skubic, M.; Popescu, M.; Galambos, C.; Koopman, R.J.; Alexander, G.L.; Phillips, L.J.; Musterman, K.; Back, J.; Miller, S.J. A New Paradigm of Technology-Enabled ‘Vital Signs’ for Early Detection of Health Change for Older Adults. Gerontology 2015, 61, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Jankovic, F.; Marinsek, N.; Foschini, L.; Kourtis, L.; Signorini, A.; Pugh, M.; Shen, J.; Yaari, R.; Maljkovic, V.; et al. Developing measures of cognitive impairment in the real world from consumer-grade multimodal sensor streams. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2145–2155. [Google Scholar]
- Li, P.; Gao, L.; Gaba, A.; Yu, L.; Cui, L.; Fan, W.; Lim, A.S.; Bennett, D.A.; Buchman, A.S.; Hu, K. Circadian disturbances in Alzheimer’s disease progression: A prospective observational cohort study of community-based older adults. Lancet Healthy Longev. 2020, 1, e96–e105. [Google Scholar] [CrossRef]
- Piau, A.; Wild, K.; Mattek, N.; Kaye, J. Current State of Digital Biomarker Technologies for Real-Life, Home-Based Monitoring of Cognitive Function for Mild Cognitive Impairment to Mild Alzheimer Disease and Implications for Clinical Care: Systematic Review. J. Med. Internet Res. 2019, 21, e12785. [Google Scholar] [CrossRef]
- Hayes, T.L.; Abendroth, F.; Adami, A.; Pavel, M.; Zitzelberger, T.A.; Kaye, J.A. Unobtrusive assessment of activity patterns associated with mild cognitive impairment. Alzheimer’s Dement. 2008, 4, 395–405. [Google Scholar] [CrossRef]
- Weizenbaum, E.; Torous, J.; Fulford, D. Cognition in Context: Understanding the Everyday Predictors of Cognitive Performance in a New Era of Measurement. JMIR mHealth uHealth 2020, 8, e14328. [Google Scholar] [CrossRef]
- Dawadi, P.; Cook, D.; Parsey, C.; Schmitter-Edgecombe, M.; Schneider, M. An approach to cognitive assessment in smart home. In Proceedings of the DMMH ’11: Proceedings of the 2011 Workshop on Data Mining for Medicine and Healthcare, San Diego, CA, USA, 21 August 2011; pp. 56–59. [Google Scholar] [CrossRef]
- Javed, A.R.; Fahad, L.G.; Farhan, A.A.; Abbas, S.; Srivastava, G.; Parizi, R.M.; Khan, M.S. Automated cognitive health assessment in smart homes using machine learning. Sustain. Cities Soc. 2021, 65, 102572. [Google Scholar] [CrossRef]
- Center of Advanced Studies In Adaptive System, Cognitive Assessment Activity Data. Available online: http://casas.wsu.edu/datasets/assessmentdata.zip (accessed on 10 January 2022).
- Akl, A.; Taati, B.; Mihailidis, A. Autonomous Unobtrusive Detection of Mild Cognitive Impairment in Older Adults. IEEE Trans. Biomed. Eng. 2015, 62, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Arifoglu, D.; Bouchachia, A. Activity Recognition and Abnormal Behaviour Detection with Recurrent Neural Networks. Procedia Comput. Sci. 2017, 110, 86–93. [Google Scholar] [CrossRef]
- van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A. Human Activity Recognition from Wireless Sensor Network Data: Benchmark and Software. In Activity Recognition in Pervasive Intelligent Environments; Chen, L., Nugent, C.D., Biswas, J., Hoey, J., Eds.; Series Title: Atlantis Ambient and Pervasive Intelligence; Atlantis Press: Paris, France, 2011; Volume 4, pp. 165–186. [Google Scholar] [CrossRef]
- Schütz, N.; Botros, A.A.; Ben Hassen, S.; Saner, H.; Buluschek, P.; Urwyler, P.; Pais, B.; Santschi, V.; Gatica-Perez, D.; Muri, R.M.; et al. A Sensor-Driven Visit Detection System in Older Adults Homes: Towards Digital Late-Life Depression Marker Extraction. IEEE J. Biomed Health Inform. 2021, 1. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.; Mattek, N.; Dodge, H.; Buracchio, T.; Austin, D.; Hagler, S.; Pavel, M.; Hayes, T. One walk a year to 1000 within a year: Continuous in-home unobtrusive gait assessment of older adults. Gait Posture 2012, 35, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Eagle, N.; Pentland, A.S. Eigenbehaviors: Identifying structure in routine. Behav. Ecol. Sociobiol. 2009, 63, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Sirovich, L.; Kirby, M. Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A JOSAA 1987, 4, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Roecke, C.; Katana, M.; Fillekes, M.; Martin, M.; Weibel, R. Mobility, Physical Activity And Social Interactions in the Daily Lives of Healthy Older Adults: The Moasis Project. Innov. Aging 2018, 2, 274. [Google Scholar] [CrossRef]
- Pais, B.; Buluschek, P.; DuPasquier, G.; Nef, T.; Schütz, N.; Saner, H.; Gatica-Perez, D.; Santschi, V. Evaluation of 1-Year in-Home Monitoring Technology by Home-Dwelling Older Adults, Family Caregivers, and Nurses. Front. Public Health 2020, 8, 538. [Google Scholar] [CrossRef]
- Dawadi, P.N.; Cook, D.J.; Schmitter-Edgecombe, M.; Parsey, C. Automated Assessment of Cognitive Health Using Smart Home Technologies. Technol. Health Care 2013, 21, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Dawadi, P.N.; Cook, D.J.; Schmitter-Edgecombe, M. Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 1302–1313. [Google Scholar] [CrossRef] [Green Version]
- Gerber, S.M.; Single, M.; Knobel, S.E.J.; Schütz, N.; Bruhin, L.C.; Botros, A.; Naef, A.C.; Schindler, K.A.; Nef, T. An Instrumented Apartment to Monitor Human Behavior: A Pilot Case Study in the NeuroTec Loft. Sensors 2022, 22, 1657. [Google Scholar] [CrossRef]
Age vs. Reconstruction error | |
Cognitive ability vs. Age | * |
Cognition score vs. Reconstruction error | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botros, A.A.; Schuetz, N.; Röcke, C.; Weibel, R.; Martin, M.; Müri, R.M.; Nef, T. Eigenbehaviour as an Indicator of Cognitive Abilities. Sensors 2022, 22, 2769. https://doi.org/10.3390/s22072769
Botros AA, Schuetz N, Röcke C, Weibel R, Martin M, Müri RM, Nef T. Eigenbehaviour as an Indicator of Cognitive Abilities. Sensors. 2022; 22(7):2769. https://doi.org/10.3390/s22072769
Chicago/Turabian StyleBotros, Angela A., Narayan Schuetz, Christina Röcke, Robert Weibel, Mike Martin, René M. Müri, and Tobias Nef. 2022. "Eigenbehaviour as an Indicator of Cognitive Abilities" Sensors 22, no. 7: 2769. https://doi.org/10.3390/s22072769
APA StyleBotros, A. A., Schuetz, N., Röcke, C., Weibel, R., Martin, M., Müri, R. M., & Nef, T. (2022). Eigenbehaviour as an Indicator of Cognitive Abilities. Sensors, 22(7), 2769. https://doi.org/10.3390/s22072769