Development and Performance Evaluation of a Low-Cost Portable PM2.5 Monitor for Mobile Deployment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smart-P Development
2.1.1. PM Sensor
2.1.2. Motherboard
2.1.3. Enclosure
2.1.4. Smartphone App
2.2. Smart-P Operation
2.3. Field Comparison with a Regulatory-Grade PM2.5 Monitor
2.4. Additional Tests
2.5. Precision
3. Results
3.1. Performance Evaluation against BAM-1020
3.2. Response to Emission Episodes in Stationary Measurements
3.3. Mobile Measurements along Street Transects
3.4. Sensitivity to Travel Speed
4. Discussion
4.1. Measurement Accuracy and Precision
4.2. Spatial Variations in PM2.5 Concentration
4.3. Potential for Citizen Science
5. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, Dec 2019); U.S. Environmental Protection Agency: Washington, DC, USA, 2019.
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogendioxide and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Burnett, R.T.; Pope, C.A.; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. NAAQS Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 3 September 2021).
- Wu, R.; Song, X.; Bai, Y.; Chen, J.; Zhao, Q.; Liu, S.; Xu, H.; Wang, T.; Feng, B.; Zhang, Y.; et al. Are Current Chinese National Ambient Air Quality Standards on 24-Hour Averages for Particulate Matter Sufficient to Protect Public Health? J. Environ. Sci. 2018, 71, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Presto, A.A.; Saha, P.; Zimmerman, N.; Ellis, A.; Subramanian, R. Spatial Variations in Urban Air Pollution: Impacts of Diesel Bus Traffic and Restaurant Cooking at Small Scales. Air Qual. Atmos. Health 2021, 14, 2059–2072. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications; U.S. EPA Office of Research and Development: Washington, DC, USA, 2021.
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- U.S. EPA. DRAFT Roadmap for Next Generation Air Monitoring; United States Environmental Protection Agency: Washington, DC, USA, 2013.
- RAMP Sensors. Available online: http://www.rsubramanian.com/ramp-sensors.html (accessed on 3 September 2021).
- Buehler, C.; Xiong, F.; Zamora, M.L.; Skog, K.M.; Kohrman-Glaser, J.; Colton, S.; McNamara, M.; Ryan, K.; Redlich, C.; Bartos, M.; et al. Stationary and Portable Multipollutant Monitors for High-Spatiotemporal-Resolution Air Quality Studies Including Online Calibration. Atmos. Meas. Tech. 2021, 14, 995–1013. [Google Scholar] [CrossRef]
- AirCasting Is an Open-Source Environmental Data Visualization Platform. Available online: https://www.habitatmap.org/aircasting (accessed on 1 November 2021).
- Air Quality Egg—Science Is Collaboration. Available online: https://airqualityegg.com/home (accessed on 2 September 2021).
- HackAIR—HackAIR. Available online: https://www.hackair.eu/ (accessed on 26 August 2021).
- PurpleAir|Real Time Air Quality Monitoring. Available online: https://www2.purpleair.com/ (accessed on 26 August 2021).
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, S.; Wang, H.; Wen, Y.; Yu, Y.T.; Li, Z.; Wallington, T.J.; Shen, W.; Deng, Y.; Tan, Q.; et al. Mobile Measurements of Carbonaceous Aerosol in Microenvironments to Discern Contributions from Traffic and Solid Fuel Burning. Environ. Sci. Technol. Lett. 2021, 8, 867–872. [Google Scholar] [CrossRef]
- Rogers, H.M.; Ditto, J.C.; Gentner, D.R. Evidence for Impacts on Surface-Level Air Quality in the Northeastern US from Long-Distance Transport of Smoke from North American Fires during the Long Island Sound Tropospheric Ozone Study (LISTOS) 2018. Atmos. Chem. Phys. 2020, 20, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Hagler, G.S.W.; Thoma, E.D.; Baldauf, R.W. High-Resolution Mobile Monitoring of Carbon Monoxide and Ultrafine Particle Concentrations in a Near-Road Environment. J. Air Waste Manag. Assoc. 2010, 60, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Hudda, N.; Gould, T.; Hartin, K.; Larson, T.V.; Fruin, S.A. Emissions from an International Airport Increase Particle Number Concentrations 4-Fold at 10 Km Downwind. Environ. Sci. Technol. 2014, 48, 6628–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hankey, S.; Marshall, J.D. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring. Environ. Sci. Technol. 2015, 49, 9194–9202. [Google Scholar] [CrossRef] [PubMed]
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile Monitoring for Mapping Spatial Variation in Urban Air Quality: Development and Validation of a Methodology Based on an Extensive Dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef] [Green Version]
- Elen, B.; Peters, J.; Poppel, M.V.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. The Aeroflex: A Bicycle for Mobile Air Quality Measurements. Sensors 2013, 13, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Minet, L.; Stokes, J.; Scott, J.; Xu, J.; Weichenthal, S.; Hatzopoulou, M. Should Traffic-Related Air Pollution and Noise Be Considered When Designing Urban Bicycle Networks? Transp. Res. Part D Transp. Environ. 2018, 65, 736–749. [Google Scholar] [CrossRef]
- Samad, A.; Vogt, U. Investigation of Urban Air Quality by Performing Mobile Measurements Using a Bicycle (MOBAIR). Urban Clim. 2020, 33, 100650. [Google Scholar] [CrossRef]
- Tran, P.T.M.; Zhao, M.; Yamamoto, K.; Minet, L.; Nguyen, T.; Balasubramanian, R. Cyclists’ Personal Exposure to Traffic-Related Air Pollution and Its Influence on Bikeability. Transp. Res. Part D Transp. Environ. 2020, 88, 102563. [Google Scholar] [CrossRef]
- Muller, C.L.; Chapman, L.; Johnston, S.; Kidd, C.; Illingworth, S.; Foody, G.; Overeem, A.; Leigh, R.R. Crowdsourcing for Climate and Atmospheric Sciences: Current Status and Future Potential. Int. J. Climatol. 2015, 35, 3185–3203. [Google Scholar] [CrossRef] [Green Version]
- Oletic, D.; Bilas, V. Empowering Smartphone Users with Sensor Node for Air Quality Measurement. J. Phys. Conf. Ser. 2013, 450, 012028. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Yang, Y.; Lu, Y.; Schultze, N.; Gu, P.; Zhou, Q.; Xu, J.; Lee, X. Performance Evaluation of a Smart Mobile Air Temperature and Humidity Sensor for Characterizing Intracity Thermal Environment. J. Atmos. Ocean. Technol. 2020, 37, 1891–1905. [Google Scholar] [CrossRef]
- Gryech, I.; Ben-Aboud, Y.; Guermah, B.; Sbihi, N.; Ghogho, M.; Kobbane, A. MoreAir: A Low-Cost Urban Air Pollution Monitoring System. Sensors 2020, 20, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genikomsakis, K.N.; Galatoulas, N.-F.; Dallas, P.I.; Candanedo Ibarra, L.M.; Margaritis, D.; Ioakimidis, C.S. Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations. Sensors 2018, 18, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SM, S.N.; Reddy Yasa, P.; Mv, N.; Khadirnaikar, S. Pooja Rani Mobile Monitoring of Air Pollution Using Low Cost Sensors to Visualize Spatio-Temporal Variation of Pollutants at Urban Hotspots. Sustain. Cities Soc. 2019, 44, 520–535. [Google Scholar] [CrossRef]
- deSouza, P.; Anjomshoaa, A.; Duarte, F.; Kahn, R.; Kumar, P.; Ratti, C. Air Quality Monitoring Using Mobile Low-Cost Sensors Mounted on Trash-Trucks: Methods Development and Lessons Learned. Sustain. Cities Soc. 2020, 60, 102239. [Google Scholar] [CrossRef]
- Velasco, A.; Ferrero, R.; Gandino, F.; Montrucchio, B.; Rebaudengo, M. A Mobile and Low-Cost System for Environmental Monitoring: A Case Study. Sensors 2016, 16, 710. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Jiang, A.; Qi, S.; Xiang, C.; Xu, N. A Bicycle-Borne Sensor for Monitoring Air Pollution near Roadways. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics—Taiwan, Taipei, Taiwan, 6–8 June 2015; pp. 166–167. [Google Scholar]
- Shindler, L. Development of a Low-Cost Sensing Platform for Air Quality Monitoring: Application in the City of Rome. Environ. Technol. 2021, 42, 618–631. [Google Scholar] [CrossRef]
- Chew, R.; Thornburg, J.; Jack, D.; Smith, C.; Yang, Q.; Chillrud, S. Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor. Sensors 2019, 19, 4613. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.D.; Massey, F.; Chastko, K.; Cupini, C. Spatial Modelling of Particulate Matter Air Pollution Sensor Measurements Collected by Community Scientists While Cycling, Land Use Regression with Spatial Cross-Validation, and Applications of Machine Learning for Data Correction. Atmos. Environ. 2020, 230, 117479. [Google Scholar] [CrossRef]
- Nova Fitness Co., Ltd. Laser PM2.5 Sensor Specification. Available online: https://www-sd-nf.oss-cn-beijing.aliyuncs.com/%E5%AE%98%E7%BD%91%E4%B8%8B%E8%BD%BD/SDS011%20laser%20PM2.5%20sensor%20specification-V1.4.pdf (accessed on 17 August 2021).
- Liu, H.-Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. J. Sens. 2018, 2018, e5096540. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Che, W.; Lau, A.K.H.; Fung, J.C.H.; Lin, C.; Lu, X. A Feasible Experimental Framework for Field Calibration of Portable Light-Scattering Aerosol Monitors: Case of TSI DustTrak. Environ. Pollut. 2019, 255, 113136. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Che, W.; Frey, H.C.; Lau, A.K.H. Factors Affecting Variability in Infiltration of Ambient Particle and Gaseous Pollutants into Home at Urban Environment. Build. Environ. 2021, 206, 108351. [Google Scholar] [CrossRef]
- Che, W.; Li, A.T.Y.; Frey, H.C.; Tang, K.T.J.; Sun, L.; Wei, P.; Hossain, M.S.; Hohenberger, T.L.; Leung, K.W.; Lau, A.K.H. Factors Affecting Variability in Gaseous and Particle Microenvironmental Air Pollutant Concentrations in Hong Kong Primary and Secondary Schools. Indoor Air 2021, 31, 170–187. [Google Scholar] [CrossRef] [PubMed]
- Zong, H.; Brimblecombe, P.; Sun, L.; Wei, P.; Ho, K.-F.; Zhang, Q.; Cai, J.; Kan, H.; Chu, M.; Che, W.; et al. Reducing the Influence of Environmental Factors on Performance of a Diffusion-Based Personal Exposure Kit. Sensors 2021, 21, 4637. [Google Scholar] [CrossRef]
- Che, W.; Frey, H.C.; Li, Z.; Lao, X.; Lau, A.K.H. Indoor Exposure to Ambient Particles and Its Estimation Using Fixed Site Monitors. Environ. Sci. Technol. 2019, 53, 808–819. [Google Scholar] [CrossRef]
- Li, Z.; Che, W.; Frey, H.C.; Lau, A.K.H. Factors Affecting Variability in PM2.5 Exposure Concentrations in a Metro System. Environ. Res. 2018, 160, 20–26. [Google Scholar] [CrossRef]
- MacNeill, M.; Kearney, J.; Wallace, L.; Gibson, M.; Héroux, M.E.; Kuchta, J.; Guernsey, J.R.; Wheeler, A.J. Quantifying the Contribution of Ambient and Indoor-Generated Fine Particles to Indoor Air in Residential Environments. Indoor Air 2014, 24, 362–375. [Google Scholar] [CrossRef]
- Lin, C.; Masey, N.; Wu, H.; Jackson, M.; Carruthers, D.J.; Reis, S.; Doherty, R.M.; Beverland, I.J.; Heal, M.R. Practical Field Calibration of Portable Monitors for Mobile Measurements of Multiple Air Pollutants. Atmosphere 2017, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Languille, B.; Gros, V.; Nicolas, B.; Honoré, C.; Kaufmann, A.; Zeitouni, K. Personal Exposure to Black Carbon, Particulate Matter and Nitrogen Dioxide in the Paris Region Measured by Portable Sensors Worn by Volunteers. Toxics 2022, 10, 33. [Google Scholar] [CrossRef]
- Lin, C.; Hu, D.; Jia, X.; Chen, J.; Deng, F.; Guo, X.; Heal, M.R.; Cowie, H.; Wilkinson, P.; Miller, M.R.; et al. The Relationship between Personal Exposure and Ambient PM2.5 and Black Carbon in Beijing. Sci. Total Environ. 2020, 737, 139801. [Google Scholar] [CrossRef] [PubMed]
- Ditto, J.C.; Machesky, J.; Gentner, D.R. Seasonal Analysis of Reduced and Oxidized Nitrogen-Containing Organic Compounds at a Coastal Site. Atmos. Chem. Phys. 2022, 22, 3045–3065. [Google Scholar] [CrossRef]
- Met One Instruments, Inc. Bam 1020 Particulate Monitor Operation Manual; Met One Instruments, Inc.: Grants Pass, OR, USA, 2016. [Google Scholar]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of Consumer Monitors to Measure Particulate Matter. J. Aerosol Sci. 2017, 107, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousan, S.; Koehler, K.; Thomas, G.; Park, J.H.; Hillman, M.; Halterman, A.; Peters, T.M. Inter-Comparison of Low-Cost Sensors for Measuring the Mass Concentration of Occupational Aerosols. Aerosol Sci. Technol. 2016, 50, 462–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the Alphasense Optical Particle Counter (OPC-N2) and the Grimm Portable Aerosol Spectrometer (PAS-1.108). Aerosol Sci. Technol. 2016, 50, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Zieger, P.; Fierz-Schmidhauser, R.; Poulain, L.; Müller, T.; Birmili, W.; Spindler, G.; Wiedensohler, A.; Baltensperger, U.; Weingartner, E. Influence of Water Uptake on the Aerosol Particle Light Scattering Coefficients of the Central European Aerosol. Tellus B Chem. Phys. Meteorol. 2014, 66, 22716. [Google Scholar] [CrossRef] [Green Version]
- Levy Zamora, M.; Xiong, F.; Gentner, D.; Kerkez, B.; Kohrman-Glaser, J.; Koehler, K. Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environ. Sci. Technol. 2019, 53, 838–849. [Google Scholar] [CrossRef]
- Chen, L.; Liang, Z.; Zhang, X.; Shuai, S. Characterizing Particulate Matter Emissions from GDI and PFI Vehicles under Transient and Cold Start Conditions. Fuel 2017, 189, 131–140. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, C.; Li, J.; Fang, J.; Tan, J.; Qin, Y.; Jiang, Y.; Qin, Z.; Bai, W.; Liang, K. Particle Emission Characteristics of DPF Regeneration from DPF Regeneration Bench and Diesel Engine Bench Measurements. Fuel 2020, 262, 116589. [Google Scholar] [CrossRef]
- Sandhu, G.S.; Frey, H.C.; Bartelt-Hunt, S.; Jones, E. In-Use Activity, Fuel Use, and Emissions of Heavy-Duty Diesel Roll-off Refuse Trucks. J. Air Waste Manag. Assoc. 2015, 65, 306–323. [Google Scholar] [CrossRef] [Green Version]
- Venkatram, A.; Snyder, M.; Isakov, V.; Kimbrough, S. Impact of Wind Direction on Near-Road Pollutant Concentrations. Atmos. Environ. 2013, 80, 248–258. [Google Scholar] [CrossRef]
- Khan, T.; Frey, H.C.; Rastogi, N.; Wei, T. Geospatial Variation of Real-World Tailpipe Emission Rates for Light-Duty Gasoline Vehicles. Environ. Sci. Technol. 2020, 54, 8968–8979. [Google Scholar] [CrossRef] [PubMed]
- Hagler, G.S.W.; Williams, R.; Papapostolou, V.; Polidori, A. Air Quality Sensors and Data Adjustment Algorithms: When Is It No Longer a Measurement? Environ. Sci. Technol. 2018, 52, 5530–5531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, A.; Saha, A.; Zamora, M.L.; Buehler, C.; Hao, L.; Xiong, F.; Gentner, D.R.; Koehler, K. Statistical Field Calibration of a Low-Cost PM2.5 Monitoring Network in Baltimore. Atmos. Environ. 2020, 242, 117761. [Google Scholar] [CrossRef]
- Jiao, W.; Frey, H.C. Comparison of Fine Particulate Matter and Carbon Monoxide Exposure Concentrations for Selected Transportation Modes. Transp. Res. Rec. 2014, 2428, 54–62. [Google Scholar] [CrossRef]
- PocketLab Homepage. Available online: https://www.thepocketlab.com (accessed on 16 September 2021).
- Carnegie Mellon University Speck Monitors: Pittsburgh Air Quality Empowerment Lending Library—Metro21: Smart Cities Institute—Carnegie Mellon University. Available online: https://www.cmu.edu/metro21/projects/speck.html (accessed on 5 November 2021).
- Wang, S.; Ma, Y.; Wang, Z.; Wang, L.; Chi, X.; Ding, A.; Yao, M.; Li, Y.; Li, Q.; Wu, M.; et al. Mobile Monitoring of Urban Air Quality at High Spatial Resolution by Low-Cost Sensors: Impacts of COVID-19 Pandemic Lockdown. Atmos. Chem. Phys. 2021, 21, 7199–7215. [Google Scholar] [CrossRef]
- Szell, M.; Mimar, S.; Perlman, T.; Ghoshal, G.; Sinatra, R. Growing Urban Bicycle Networks. arXiv 2021, arXiv:2107.02185. [Google Scholar]
Relative Humidity (%) | Dependent Variable | Independent Variable | N a | Slope | Intercept (µg m−3) | R2 | RMSE b (µg m−3) | MAE c (µg m−3) | MBE d (µg m−3) | BAM-1020 PM2.5 (µg m−3) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | ||||||||||
38–100 | Smart-P 501 PM2.5 | BAM-1020 PM2.5 | 167 | 1.39 | −6.22 | 0.69 | 10.1 | 7.1 | 1.5 | 2 | 20 | 54 |
38–70 | 87 | 1.26 | −7.24 | 0.84 | 5.8 | 5.2 | −1.9 | 3 | 21 | 54 | ||
70–100 | 80 | 1.58 | −5.78 | 0.68 | 11.8 | 8.9 | 5.1 | 5 | 19 | 53 | ||
38–100 | Smart-P 502 PM2.5 | 153 | 1.31 | −7.22 | 0.72 | 9.0 | 6.8 | −0.9 | 3 | 20 | 54 | |
38–70 | 79 | 1.19 | −7.23 | 0.82 | 6.0 | 5.3 | −3.2 | 3 | 22 | 54 | ||
70–100 | 74 | 1.49 | −7.63 | 0.73 | 10.4 | 7.3 | 1.6 | 5 | 19 | 53 | ||
38–100 | Smart-P 503 PM2.5 | 159 | 0.89 | −1.24 | 0.53 | 5.6 | 5.3 | −3.0 | 5 | 16 | 39 | |
38–70 | 94 | 0.92 | −3.21 | 0.73 | 4.3 | 3.4 | −4.4 | 5 | 16 | 39 | ||
70–100 | 65 | 0.78 | 2.68 | 0.25 | 6.5 | 5.5 | −0.9 | 8 | 16 | 31 | ||
38–100 | Smart-P 504 PM2.5 | 163 | 1.37 | −6.35 | 0.74 | 8.8 | 6.8 | 0.7 | 3 | 19 | 54 | |
38–70 | 79 | 1.26 | −7.50 | 0.86 | 5.7 | 4.7 | −2.2 | 3 | 20 | 54 | ||
70–100 | 84 | 1.53 | −6.18 | 0.73 | 9.9 | 7.8 | 3.4 | 5 | 18 | 53 |
Scenario | Smart-P Monitors | Relative Humidity (%) | # of Hours | SD (µg m−3) | CV (%) |
---|---|---|---|---|---|
1 | 501, 502, 503, 504 | 38—100 | 65 | 1.6 | 9 |
2 | 38–70 | 31 | 0.7 | 6 | |
3 | 70–100 | 34 | 2.5 | 12 | |
4 | 501, 502, 504 | 38–100 | 117 | 1.4 | 9 |
5 | 38–70 | 54 | 1.0 | 6 | |
6 | 70–100 | 63 | 2.2 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Yuan, W.; Cao, C.; Buehler, C.; Gentner, D.R.; Lee, X. Development and Performance Evaluation of a Low-Cost Portable PM2.5 Monitor for Mobile Deployment. Sensors 2022, 22, 2767. https://doi.org/10.3390/s22072767
Chen M, Yuan W, Cao C, Buehler C, Gentner DR, Lee X. Development and Performance Evaluation of a Low-Cost Portable PM2.5 Monitor for Mobile Deployment. Sensors. 2022; 22(7):2767. https://doi.org/10.3390/s22072767
Chicago/Turabian StyleChen, Mingjian, Weichang Yuan, Chang Cao, Colby Buehler, Drew R. Gentner, and Xuhui Lee. 2022. "Development and Performance Evaluation of a Low-Cost Portable PM2.5 Monitor for Mobile Deployment" Sensors 22, no. 7: 2767. https://doi.org/10.3390/s22072767
APA StyleChen, M., Yuan, W., Cao, C., Buehler, C., Gentner, D. R., & Lee, X. (2022). Development and Performance Evaluation of a Low-Cost Portable PM2.5 Monitor for Mobile Deployment. Sensors, 22(7), 2767. https://doi.org/10.3390/s22072767